The instability of the equilibrium of an inhomogeneous fluid in cases when the potential energy is not minimal

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The possibility of extending the methods of proof of instability /1-3/ to the hydrodynamics of an ideal incompressible density-inhomogeneous (stratified) fluid is explored. As distinct from the general statement /3/, the rigid walls of the vessel containing the fluid are assumed to be fixed, so that the purely hydrodynamic part of the problem is isolated. Examples of a two-layer (with and without surface tension) and of a continuously stratified fluid are studied. The main result is to find Lyapunov functionals W which in all cases are increasing, by virtue of the linearized equations of motion of the fluid. The structure of these functionals is such that their growth implies instability in the sense of an increase of the integrals of the disturbance-squared of the hydrodynamic fields (instability in the linear approximation in the mean square). The form of the functionals W is determined by the Hamiltonian statement of the theorem on the instability of finite-dimensional mechanical systems /2/ and by the usual ways of introducing the canonical variables into the hydrodynamic problem /4, 5/. In view of the well-known equivalence of stratification and rotation effects /6, 7/, all the present results hold for two classes of rotating flows of homogeneous fluid. Lyapunov's and Chetayev's theorems (the converse of Lagrange's theorems) are well-known in analytical mechanics; they consist in proving the instability of the equilibrium position of a mechanical system when its potential energy has a maximum or a saddle point /1, 2/. The extension of these theorems to systems that contain rigid bodies and fluid is described in /3/ (Theorem III, p.178).

Original languageEnglish
Pages (from-to)322-328
Number of pages7
JournalJournal of Applied Mathematics and Mechanics
Volume52
Issue number3
DOIs
Publication statusPublished - 1988

Fingerprint

Potential energy
Hydrodynamics
Fluid
Fluids
Stratified Fluid
Energy
Theorem
Mechanical Systems
Lagrange's theorem
Rotational flow
Rotating Flow
Hamiltonians
Lyapunov Functionals
Linear Approximation
Stratification
Saddlepoint
Surface Tension
Rigid Body
Converse
Mean Square

ASJC Scopus subject areas

  • Mechanical Engineering
  • Applied Mathematics
  • Mathematical Physics
  • Modelling and Simulation

Cite this

@article{7517beb1335443888844bfe458ec0341,
title = "The instability of the equilibrium of an inhomogeneous fluid in cases when the potential energy is not minimal",
abstract = "The possibility of extending the methods of proof of instability /1-3/ to the hydrodynamics of an ideal incompressible density-inhomogeneous (stratified) fluid is explored. As distinct from the general statement /3/, the rigid walls of the vessel containing the fluid are assumed to be fixed, so that the purely hydrodynamic part of the problem is isolated. Examples of a two-layer (with and without surface tension) and of a continuously stratified fluid are studied. The main result is to find Lyapunov functionals W which in all cases are increasing, by virtue of the linearized equations of motion of the fluid. The structure of these functionals is such that their growth implies instability in the sense of an increase of the integrals of the disturbance-squared of the hydrodynamic fields (instability in the linear approximation in the mean square). The form of the functionals W is determined by the Hamiltonian statement of the theorem on the instability of finite-dimensional mechanical systems /2/ and by the usual ways of introducing the canonical variables into the hydrodynamic problem /4, 5/. In view of the well-known equivalence of stratification and rotation effects /6, 7/, all the present results hold for two classes of rotating flows of homogeneous fluid. Lyapunov's and Chetayev's theorems (the converse of Lagrange's theorems) are well-known in analytical mechanics; they consist in proving the instability of the equilibrium position of a mechanical system when its potential energy has a maximum or a saddle point /1, 2/. The extension of these theorems to systems that contain rigid bodies and fluid is described in /3/ (Theorem III, p.178).",
author = "Vladimirov, {V. A.}",
year = "1988",
doi = "10.1016/0021-8928(88)90084-6",
language = "English",
volume = "52",
pages = "322--328",
journal = "Journal of Applied Mathematics and Mechanics",
issn = "0021-8928",
publisher = "Elsevier BV",
number = "3",

}

TY - JOUR

T1 - The instability of the equilibrium of an inhomogeneous fluid in cases when the potential energy is not minimal

AU - Vladimirov, V. A.

PY - 1988

Y1 - 1988

N2 - The possibility of extending the methods of proof of instability /1-3/ to the hydrodynamics of an ideal incompressible density-inhomogeneous (stratified) fluid is explored. As distinct from the general statement /3/, the rigid walls of the vessel containing the fluid are assumed to be fixed, so that the purely hydrodynamic part of the problem is isolated. Examples of a two-layer (with and without surface tension) and of a continuously stratified fluid are studied. The main result is to find Lyapunov functionals W which in all cases are increasing, by virtue of the linearized equations of motion of the fluid. The structure of these functionals is such that their growth implies instability in the sense of an increase of the integrals of the disturbance-squared of the hydrodynamic fields (instability in the linear approximation in the mean square). The form of the functionals W is determined by the Hamiltonian statement of the theorem on the instability of finite-dimensional mechanical systems /2/ and by the usual ways of introducing the canonical variables into the hydrodynamic problem /4, 5/. In view of the well-known equivalence of stratification and rotation effects /6, 7/, all the present results hold for two classes of rotating flows of homogeneous fluid. Lyapunov's and Chetayev's theorems (the converse of Lagrange's theorems) are well-known in analytical mechanics; they consist in proving the instability of the equilibrium position of a mechanical system when its potential energy has a maximum or a saddle point /1, 2/. The extension of these theorems to systems that contain rigid bodies and fluid is described in /3/ (Theorem III, p.178).

AB - The possibility of extending the methods of proof of instability /1-3/ to the hydrodynamics of an ideal incompressible density-inhomogeneous (stratified) fluid is explored. As distinct from the general statement /3/, the rigid walls of the vessel containing the fluid are assumed to be fixed, so that the purely hydrodynamic part of the problem is isolated. Examples of a two-layer (with and without surface tension) and of a continuously stratified fluid are studied. The main result is to find Lyapunov functionals W which in all cases are increasing, by virtue of the linearized equations of motion of the fluid. The structure of these functionals is such that their growth implies instability in the sense of an increase of the integrals of the disturbance-squared of the hydrodynamic fields (instability in the linear approximation in the mean square). The form of the functionals W is determined by the Hamiltonian statement of the theorem on the instability of finite-dimensional mechanical systems /2/ and by the usual ways of introducing the canonical variables into the hydrodynamic problem /4, 5/. In view of the well-known equivalence of stratification and rotation effects /6, 7/, all the present results hold for two classes of rotating flows of homogeneous fluid. Lyapunov's and Chetayev's theorems (the converse of Lagrange's theorems) are well-known in analytical mechanics; they consist in proving the instability of the equilibrium position of a mechanical system when its potential energy has a maximum or a saddle point /1, 2/. The extension of these theorems to systems that contain rigid bodies and fluid is described in /3/ (Theorem III, p.178).

UR - http://www.scopus.com/inward/record.url?scp=0024181569&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024181569&partnerID=8YFLogxK

U2 - 10.1016/0021-8928(88)90084-6

DO - 10.1016/0021-8928(88)90084-6

M3 - Article

AN - SCOPUS:0024181569

VL - 52

SP - 322

EP - 328

JO - Journal of Applied Mathematics and Mechanics

JF - Journal of Applied Mathematics and Mechanics

SN - 0021-8928

IS - 3

ER -