Sur la stabilité exponentielle des systèmes hyperboliques du premier ordre à coefficients l∞

Application aux échangeurs thermiques couplés

Boumediène Chentouf, Cheng Zhong Xu, Gauthier Sallet

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This paper deals with exponential stability for a large class of first order symmetric hyperbolic linear systems with L space variable coefficients. By using the classical method of regularization and the method of characteristics, we prove that such systems are exponentially stable without any smoothness assumption on the coefficients. Since our motivation comes from a coupled heat exchangers system, we give an interesting application to this physical system met in chemical engineering.

Original languageEnglish
Pages (from-to)23-41
Number of pages19
JournalBulletin of the Belgian Mathematical Society - Simon Stevin
Volume10
Issue number1
Publication statusPublished - Jan 2003

Fingerprint

Coefficient
Method of Characteristics
Heat Exchanger
L-space
Hyperbolic Systems
Exponential Stability
Variable Coefficients
Smoothness
Regularization
Linear Systems
First-order
Engineering
Class

Keywords

  • Caractéristiques
  • Echangeur thermique
  • Régularisation
  • Stabilité exponentielle
  • Système hyperbolique symétrique à coefficients discontinus

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Sur la stabilité exponentielle des systèmes hyperboliques du premier ordre à coefficients l∞ : Application aux échangeurs thermiques couplés. / Chentouf, Boumediène; Xu, Cheng Zhong; Sallet, Gauthier.

In: Bulletin of the Belgian Mathematical Society - Simon Stevin, Vol. 10, No. 1, 01.2003, p. 23-41.

Research output: Contribution to journalArticle

@article{1e54d63069fa44249f273ec1cd244328,
title = "Sur la stabilit{\'e} exponentielle des syst{\`e}mes hyperboliques du premier ordre {\`a} coefficients l∞: Application aux {\'e}changeurs thermiques coupl{\'e}s",
abstract = "This paper deals with exponential stability for a large class of first order symmetric hyperbolic linear systems with L∞ space variable coefficients. By using the classical method of regularization and the method of characteristics, we prove that such systems are exponentially stable without any smoothness assumption on the coefficients. Since our motivation comes from a coupled heat exchangers system, we give an interesting application to this physical system met in chemical engineering.",
keywords = "Caract{\'e}ristiques, Echangeur thermique, R{\'e}gularisation, Stabilit{\'e} exponentielle, Syst{\`e}me hyperbolique sym{\'e}trique {\`a} coefficients discontinus",
author = "Boumedi{\`e}ne Chentouf and Xu, {Cheng Zhong} and Gauthier Sallet",
year = "2003",
month = "1",
language = "English",
volume = "10",
pages = "23--41",
journal = "Bulletin of the Belgian Mathematical Society - Simon Stevin",
issn = "1370-1444",
publisher = "Belgian Mathematical Society",
number = "1",

}

TY - JOUR

T1 - Sur la stabilité exponentielle des systèmes hyperboliques du premier ordre à coefficients l∞

T2 - Application aux échangeurs thermiques couplés

AU - Chentouf, Boumediène

AU - Xu, Cheng Zhong

AU - Sallet, Gauthier

PY - 2003/1

Y1 - 2003/1

N2 - This paper deals with exponential stability for a large class of first order symmetric hyperbolic linear systems with L∞ space variable coefficients. By using the classical method of regularization and the method of characteristics, we prove that such systems are exponentially stable without any smoothness assumption on the coefficients. Since our motivation comes from a coupled heat exchangers system, we give an interesting application to this physical system met in chemical engineering.

AB - This paper deals with exponential stability for a large class of first order symmetric hyperbolic linear systems with L∞ space variable coefficients. By using the classical method of regularization and the method of characteristics, we prove that such systems are exponentially stable without any smoothness assumption on the coefficients. Since our motivation comes from a coupled heat exchangers system, we give an interesting application to this physical system met in chemical engineering.

KW - Caractéristiques

KW - Echangeur thermique

KW - Régularisation

KW - Stabilité exponentielle

KW - Système hyperbolique symétrique à coefficients discontinus

UR - http://www.scopus.com/inward/record.url?scp=0038053173&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038053173&partnerID=8YFLogxK

M3 - Article

VL - 10

SP - 23

EP - 41

JO - Bulletin of the Belgian Mathematical Society - Simon Stevin

JF - Bulletin of the Belgian Mathematical Society - Simon Stevin

SN - 1370-1444

IS - 1

ER -