Steady-state and time-resolved spectroscopy of 2, 2′-bipyridine-3, 3′-diol in solvents and cyclodextrins

Polarity and nanoconfinement effects on tautomerization

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

The ground- and excited-state tautomerization of the 2, 2′-bipyridine-3, 3′-diol molecule (BP(OH)2) was studied in different solvents and in confined nanocavities of cyclodextrins (CDs) using steady-state and lifetime spectroscopic measurements. In all solvents, a dizwitterion (DZ) tautomer is produced in the excited state after intramolecular double-proton transfer. This tautomer is stabilized in the ground state in water only and produces two unique absorption peaks in the region of 400-450 nm. The DZ tautomer fluoresces in the green and as the solvent polarity increases, the fluorescence peak is blue-shifted (498 nm in cyclohexane versus 462 nm in water), and the fluorescence lifetime gets shorter (3.10 ns in cyclohexane versus 0.65 ns in water). The results indicate the sensitivity of this tautomer to solvent polarity, particularly the solvent's hydrogen-bonding capability. In water, another photoinduced tautomerization mechanism takes place via a water network solvating each of the two hydrogen-bonding centers of the molecule. The second tautomer is detected as a small shoulder in the blue side of the fluorescence peak and has a lifetime of 5.40 ns. Using BP(OH)2 to probe the nanocavities of aqueous CDs reveals the degree of hydrophobicity of the cavities and the different mechanisms of probe encapsulation. As the cavity size decreases in the order y-CD to β-CD to α-CD, the cavity is more hydrophobic, which is reflected in an intensity decrease of the absorbance of the DZ tautomer and a red shift in its fluorescence peak. The measured lifetimes show the same trend and reveal how the probe interacts with the CD moiety. In y-CD, the probe is located near the secondary rim of the CD annulus, whereas in α-CD, the probe is completely sequestered between two CDs, and the hydrophobicity is close to that observed in cyclohexane. In β-CD and its derivatives, the spectral changes and the measured lifetimes indicate that the CD cavity gets more hydrophobic as a result of methyl substitution of the primary and secondary hydroxyls of the β-CD rims. In the fully methylated 2, 3, 6-tri-0-methyl-β-CD, the probe is exposed to water near the secondary rim due to the steric effect at the entrance rim that prevents the probe from full encapsulation.

Original languageEnglish
Pages (from-to)1069-1076
Number of pages8
JournalJournal of Physical Chemistry B
Volume114
Issue number2
DOIs
Publication statusPublished - Jan 21 2010

Fingerprint

Cyclodextrins
tautomers
polarity
Spectroscopy
probes
rims
spectroscopy
life (durability)
cyclohexane
water
fluorescence
cavities
hydrophobicity
Water
Cyclohexane
Fluorescence
ground state
annuli
hydrogen
Hydrophobicity

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Materials Chemistry
  • Surfaces, Coatings and Films

Cite this

@article{1850cf5b80614ada8610554acc880122,
title = "Steady-state and time-resolved spectroscopy of 2, 2′-bipyridine-3, 3′-diol in solvents and cyclodextrins: Polarity and nanoconfinement effects on tautomerization",
abstract = "The ground- and excited-state tautomerization of the 2, 2′-bipyridine-3, 3′-diol molecule (BP(OH)2) was studied in different solvents and in confined nanocavities of cyclodextrins (CDs) using steady-state and lifetime spectroscopic measurements. In all solvents, a dizwitterion (DZ) tautomer is produced in the excited state after intramolecular double-proton transfer. This tautomer is stabilized in the ground state in water only and produces two unique absorption peaks in the region of 400-450 nm. The DZ tautomer fluoresces in the green and as the solvent polarity increases, the fluorescence peak is blue-shifted (498 nm in cyclohexane versus 462 nm in water), and the fluorescence lifetime gets shorter (3.10 ns in cyclohexane versus 0.65 ns in water). The results indicate the sensitivity of this tautomer to solvent polarity, particularly the solvent's hydrogen-bonding capability. In water, another photoinduced tautomerization mechanism takes place via a water network solvating each of the two hydrogen-bonding centers of the molecule. The second tautomer is detected as a small shoulder in the blue side of the fluorescence peak and has a lifetime of 5.40 ns. Using BP(OH)2 to probe the nanocavities of aqueous CDs reveals the degree of hydrophobicity of the cavities and the different mechanisms of probe encapsulation. As the cavity size decreases in the order y-CD to β-CD to α-CD, the cavity is more hydrophobic, which is reflected in an intensity decrease of the absorbance of the DZ tautomer and a red shift in its fluorescence peak. The measured lifetimes show the same trend and reveal how the probe interacts with the CD moiety. In y-CD, the probe is located near the secondary rim of the CD annulus, whereas in α-CD, the probe is completely sequestered between two CDs, and the hydrophobicity is close to that observed in cyclohexane. In β-CD and its derivatives, the spectral changes and the measured lifetimes indicate that the CD cavity gets more hydrophobic as a result of methyl substitution of the primary and secondary hydroxyls of the β-CD rims. In the fully methylated 2, 3, 6-tri-0-methyl-β-CD, the probe is exposed to water near the secondary rim due to the steric effect at the entrance rim that prevents the probe from full encapsulation.",
author = "Abou-Zied, {Osama K.}",
year = "2010",
month = "1",
day = "21",
doi = "10.1021/jp909528e",
language = "English",
volume = "114",
pages = "1069--1076",
journal = "Journal of Physical Chemistry B Materials",
issn = "1520-6106",
publisher = "American Chemical Society",
number = "2",

}

TY - JOUR

T1 - Steady-state and time-resolved spectroscopy of 2, 2′-bipyridine-3, 3′-diol in solvents and cyclodextrins

T2 - Polarity and nanoconfinement effects on tautomerization

AU - Abou-Zied, Osama K.

PY - 2010/1/21

Y1 - 2010/1/21

N2 - The ground- and excited-state tautomerization of the 2, 2′-bipyridine-3, 3′-diol molecule (BP(OH)2) was studied in different solvents and in confined nanocavities of cyclodextrins (CDs) using steady-state and lifetime spectroscopic measurements. In all solvents, a dizwitterion (DZ) tautomer is produced in the excited state after intramolecular double-proton transfer. This tautomer is stabilized in the ground state in water only and produces two unique absorption peaks in the region of 400-450 nm. The DZ tautomer fluoresces in the green and as the solvent polarity increases, the fluorescence peak is blue-shifted (498 nm in cyclohexane versus 462 nm in water), and the fluorescence lifetime gets shorter (3.10 ns in cyclohexane versus 0.65 ns in water). The results indicate the sensitivity of this tautomer to solvent polarity, particularly the solvent's hydrogen-bonding capability. In water, another photoinduced tautomerization mechanism takes place via a water network solvating each of the two hydrogen-bonding centers of the molecule. The second tautomer is detected as a small shoulder in the blue side of the fluorescence peak and has a lifetime of 5.40 ns. Using BP(OH)2 to probe the nanocavities of aqueous CDs reveals the degree of hydrophobicity of the cavities and the different mechanisms of probe encapsulation. As the cavity size decreases in the order y-CD to β-CD to α-CD, the cavity is more hydrophobic, which is reflected in an intensity decrease of the absorbance of the DZ tautomer and a red shift in its fluorescence peak. The measured lifetimes show the same trend and reveal how the probe interacts with the CD moiety. In y-CD, the probe is located near the secondary rim of the CD annulus, whereas in α-CD, the probe is completely sequestered between two CDs, and the hydrophobicity is close to that observed in cyclohexane. In β-CD and its derivatives, the spectral changes and the measured lifetimes indicate that the CD cavity gets more hydrophobic as a result of methyl substitution of the primary and secondary hydroxyls of the β-CD rims. In the fully methylated 2, 3, 6-tri-0-methyl-β-CD, the probe is exposed to water near the secondary rim due to the steric effect at the entrance rim that prevents the probe from full encapsulation.

AB - The ground- and excited-state tautomerization of the 2, 2′-bipyridine-3, 3′-diol molecule (BP(OH)2) was studied in different solvents and in confined nanocavities of cyclodextrins (CDs) using steady-state and lifetime spectroscopic measurements. In all solvents, a dizwitterion (DZ) tautomer is produced in the excited state after intramolecular double-proton transfer. This tautomer is stabilized in the ground state in water only and produces two unique absorption peaks in the region of 400-450 nm. The DZ tautomer fluoresces in the green and as the solvent polarity increases, the fluorescence peak is blue-shifted (498 nm in cyclohexane versus 462 nm in water), and the fluorescence lifetime gets shorter (3.10 ns in cyclohexane versus 0.65 ns in water). The results indicate the sensitivity of this tautomer to solvent polarity, particularly the solvent's hydrogen-bonding capability. In water, another photoinduced tautomerization mechanism takes place via a water network solvating each of the two hydrogen-bonding centers of the molecule. The second tautomer is detected as a small shoulder in the blue side of the fluorescence peak and has a lifetime of 5.40 ns. Using BP(OH)2 to probe the nanocavities of aqueous CDs reveals the degree of hydrophobicity of the cavities and the different mechanisms of probe encapsulation. As the cavity size decreases in the order y-CD to β-CD to α-CD, the cavity is more hydrophobic, which is reflected in an intensity decrease of the absorbance of the DZ tautomer and a red shift in its fluorescence peak. The measured lifetimes show the same trend and reveal how the probe interacts with the CD moiety. In y-CD, the probe is located near the secondary rim of the CD annulus, whereas in α-CD, the probe is completely sequestered between two CDs, and the hydrophobicity is close to that observed in cyclohexane. In β-CD and its derivatives, the spectral changes and the measured lifetimes indicate that the CD cavity gets more hydrophobic as a result of methyl substitution of the primary and secondary hydroxyls of the β-CD rims. In the fully methylated 2, 3, 6-tri-0-methyl-β-CD, the probe is exposed to water near the secondary rim due to the steric effect at the entrance rim that prevents the probe from full encapsulation.

UR - http://www.scopus.com/inward/record.url?scp=75649107240&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=75649107240&partnerID=8YFLogxK

U2 - 10.1021/jp909528e

DO - 10.1021/jp909528e

M3 - Article

VL - 114

SP - 1069

EP - 1076

JO - Journal of Physical Chemistry B Materials

JF - Journal of Physical Chemistry B Materials

SN - 1520-6106

IS - 2

ER -