Stabilizing magnetic skyrmions in constricted nanowires

Warda Al Saidi, Rachid Sbiaa*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Magnetic skyrmions are topologically-protected chiral nano-scale spin structures that offer low power and high-density functionalities for spintronic devices. They behave as particles that can be moved, created and annihilated. These characteristics make them promising information-carrying bits, hence a precise control of the skyrmion motion is essential. This study shows that stabilizing skyrmion is possible using a stepped nanowire geometry. The nanoconstriction dimension and materials properties are found to strongly affect the pinning, depinning and annihilation of the skyrmion. It is also observed that near the stepped region, the skyrmion slows down and its velocity changes direction before its stability. Moreover, a reduction of skyrmion size as it squeezes through the stepped region is observed. Our results will open a new strategy for the design and development of skyrmion-based devices.

Original languageEnglish
Article number10141
JournalScientific Reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Stabilizing magnetic skyrmions in constricted nanowires'. Together they form a unique fingerprint.

Cite this