Multichannel-based newborn eeg seizure detection using time-frequency matched filter

M. S. Khlif*, M. Mesbah, B. Boashash, P. Colditz

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Citations (Scopus)

Abstract

In recent years, much effort has been made toward developing computerized methods to detect seizures. In adults, the clinical signs of seizures are well defined and easily recognizable. But in newborns, these signs are either subtle or completely absent. For this reason, the electroencephalogram (EEG) has been the most dependable tool used for detecting seizures in newborns. Considering the non-stationary and multicomponent nature of the EEG signals, timefrequency (TF) based methods were found to be very suitable for the analysis of such signals. Using TF representation of EEG signals allows extracting TF signatures that are characteristic of EEG seizures. In this paper we present a TF method for newborn EEG seizure detection using a TF matched filter. The threshold used to distinguish between seizure and nonseizure is data-dependent and is set using the EEG background. Multichannel geometrical correlation, based on a concept of incidence matrix, was utilized to further enhance the performance of the detector.

Original languageEnglish
Title of host publication29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07
Pages1265-1268
Number of pages4
DOIs
Publication statusPublished - 2007
Externally publishedYes
Event29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07 - Lyon, France
Duration: Aug 23 2007Aug 26 2007

Publication series

NameAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
ISSN (Print)0589-1019

Other

Other29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07
Country/TerritoryFrance
CityLyon
Period8/23/078/26/07

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Multichannel-based newborn eeg seizure detection using time-frequency matched filter'. Together they form a unique fingerprint.

Cite this