Medium-voltage 12-pulse converter: Output voltage harmonic compensation using a series APF

Mostafa S. Hamad, Mahmoud I. Masoud, Barry W. Williams

Research output: Contribution to journalArticlepeer-review

80 Citations (Scopus)

Abstract

In this paper, compensation of the dc-side voltage harmonics of a medium-voltage (MV) 12-pulse ac/dc converter is achieved using a series active power filter (APF). The output voltage harmonics are dependent on the converter firing delay angles and, consequently, on the specific power locus followed by the ac/dc converter. This power locus ensures minimum fifth and seventh harmonics (total rms) in the input current which provides minimum input current total harmonic distortion when the reactive power is less than 0.5 p.u. The series APF is connected between the load and the converter output via a magnetic amplifier to eliminate the dc current from the APF inverter, thus reducing inverter losses. Voltage harmonic compensation using a series APF, with and without a magnetic amplifier, is examined with both resistive and inductive loads. The simulation results for compensating a 3.3-kV MV 12-pulse converter system are experimentally verified using a scaled prototype 12-pulse converter with a series APF.

Original languageEnglish
Article number6469212
Pages (from-to)43-52
Number of pages10
JournalIEEE Transactions on Industrial Electronics
Volume61
Issue number1
DOIs
Publication statusPublished - 2014

Keywords

  • 12-pulse converters
  • Active power filters (APFs)
  • dc-side compensation
  • magnetic amplifiers
  • medium-voltage (MV) rectifiers
  • series APF

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Medium-voltage 12-pulse converter: Output voltage harmonic compensation using a series APF'. Together they form a unique fingerprint.

Cite this