Graphene coupled TiO2 photocatalysts for environmental applications: A review

Nisha T. Padmanabhan, Nishanth Thomas, Jesna Louis, Dhanu Treasa Mathew, Priyanka Ganguly, Honey John, Suresh C. Pillai*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

133 Citations (Scopus)

Abstract

Nanostructured photocatalysts have always offered opportunities to solve issues concerned with the environmental challenges caused by rapid urbanization and industrialization. These materials, due to their tunable physicochemical characteristics, are capable of providing a clean and sustainable ecosystem to humanity. One of the current thriving research focuses of visible-light-driven photocatalysts is on the nanocomposites of titanium dioxide (TiO2) with carbon nanostructures, especially graphene. Coupling TiO2 with graphene has proven more active by photocatalysis than TiO2 alone. It is generally considered that graphene sheets act as an electron acceptor facilitating the transfer and separation of photogenerated electrons during TiO2 excitation, thereby reducing electron-hole recombination. This study briefly reviews the fundamental mechanism and interfacial charge-transfer dynamics in TiO2/graphene nanocomposites. Design strategies of various graphene-based hybrids are highlighted along with some specialized synthetic routes adopted to attain preferred properties. Importantly, the enhancing interfacial charge transfer of photogenerated e¯CB through the graphene layers by morphology orientation of TiO2, predominated exposure of their high energy crystal facets, defect engineering, enhancing catalytic sites in graphene, constructing dedicated architectures, tuning the nanomaterial dimensionality at the interface, and employing the synergism adopted through various modifications, are systematically compiled. Portraying the significance of these photocatalytic hybrids in environmental remediation, important applications including air and water purification, self-cleaning surfaces, H2 production, and CO2 reduction to desired fuels, are addressed.

Original languageEnglish
Article number129506
JournalChemosphere
Volume271
DOIs
Publication statusPublished - May 2021
Externally publishedYes

Keywords

  • 2D materials
  • Anti-microbial property
  • CO photoreduction
  • Synthesis
  • Titania/graphene hybrids
  • Water purification
  • Water splitting

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • General Chemistry
  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Graphene coupled TiO2 photocatalysts for environmental applications: A review'. Together they form a unique fingerprint.

Cite this