TY - JOUR
T1 - Flexibility in language action interaction
T2 - The influence of movement type
AU - Shebani, Zubaida
AU - Pulvermüller, Friedemann
N1 - Funding Information:
This work was supported by grants of the Medical Research Council, UK (U1055.04.003.00001.01, MC_US_A060_0034) and the Deutsche Forschungsgemeinschaft (Pu 97/22-1) to FP and by fellowships and grants of the Wolfson College Cambridge and the College of Humanities and Social Sciences, United Arab Emirates University (G00002203) to ZS. The fees for Open Access publication have been covered by the Deutsche Forschungsgemeinschaft (DFG).
Publisher Copyright:
© 2018 Shebani and Pulvermüller.
PY - 2018/6/25
Y1 - 2018/6/25
N2 - Recent neuropsychological studies in neurological patients and healthy subjects suggest a close functional relationship between the brain systems for language and action. Facilitation and inhibition effects of motor system activity on language processing have been demonstrated as well as causal effects in the reverse direction, from language processes on motor excitability or performance. However, as the documented effects between motor and language systems were sometimes facilitatory and sometimes inhibitory, the “sign” of these effects still remains to be explained. In a previous study, we reported a word-category-specific differential impairment of verbal working memory for concordant arm- and leg-related action words brought about by complex sequential movements of the hands and feet. In this article, we seek to determine whether the sign of the functional interaction between language and action systems of the human brain can be changed in a predictable manner by changing movement type. We here report that the sign of the effect of motor movement on action word memory can be reversed from interference to facilitation if, instead of complex movement sequences, simple repetitive movements are performed. Specifically, when engaged in finger tapping, subjects were able to remember relatively more arm-related action words (as compared to control conditions), thus documenting an enhancement of working memory brought about by simple hand movements. In contrast, when performing complex sequences of finger movements, an effector-specific degradation of action word memory was found. By manipulating the sign of the effect in accord with theory-driven predictions, these findings provide support for shared neural bases for motor movement and verbal working memory for action-related words and strengthen the argument that motor systems play a causal and functionally relevant role in language processing semantically related to action.
AB - Recent neuropsychological studies in neurological patients and healthy subjects suggest a close functional relationship between the brain systems for language and action. Facilitation and inhibition effects of motor system activity on language processing have been demonstrated as well as causal effects in the reverse direction, from language processes on motor excitability or performance. However, as the documented effects between motor and language systems were sometimes facilitatory and sometimes inhibitory, the “sign” of these effects still remains to be explained. In a previous study, we reported a word-category-specific differential impairment of verbal working memory for concordant arm- and leg-related action words brought about by complex sequential movements of the hands and feet. In this article, we seek to determine whether the sign of the functional interaction between language and action systems of the human brain can be changed in a predictable manner by changing movement type. We here report that the sign of the effect of motor movement on action word memory can be reversed from interference to facilitation if, instead of complex movement sequences, simple repetitive movements are performed. Specifically, when engaged in finger tapping, subjects were able to remember relatively more arm-related action words (as compared to control conditions), thus documenting an enhancement of working memory brought about by simple hand movements. In contrast, when performing complex sequences of finger movements, an effector-specific degradation of action word memory was found. By manipulating the sign of the effect in accord with theory-driven predictions, these findings provide support for shared neural bases for motor movement and verbal working memory for action-related words and strengthen the argument that motor systems play a causal and functionally relevant role in language processing semantically related to action.
KW - Action word
KW - Motor movement
KW - Motor-language interaction
KW - Semantics
KW - Working memory
UR - http://www.scopus.com/inward/record.url?scp=85055123670&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055123670&partnerID=8YFLogxK
U2 - 10.3389/fnhum.2018.00252
DO - 10.3389/fnhum.2018.00252
M3 - Article
AN - SCOPUS:85055123670
SN - 1662-5161
VL - 12
JO - Frontiers in Human Neuroscience
JF - Frontiers in Human Neuroscience
M1 - 252
ER -