TY - JOUR
T1 - Evaluation of vehicular pollution levels using line source model for hot spots in Muscat, Oman
AU - Amoatey, Patrick
AU - Omidvarborna, Hamid
AU - Baawain, Mahad Said
AU - Al-Mamun, Abdullah
N1 - Funding Information:
The authors received the support provided by the Ministry of Environment and Climatic Affairs (MECA), Oman, under the Grant No. CR/DVC/CESAR/16/05.
Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - A detailed investigation was carried out to assess the concentration of near-road traffic-related air pollution (TRAP) using a dispersion model in Muscat. Two ambient air quality monitoring (AQM) stations were utilized separately at six locations near major roadways (each location for 2 months) to monitor carbon monoxide (CO) and nitrogen oxides (NOx). The study aimed to measure the concentration of near-road TRAP in a city hot spots and develop a validated dispersion model via performance measures. The US Environmental Protection Agency (US EPA) Line Source Model was implemented in which the pollutant emission factors were obtained through Comprehensive Modal Emission Model (CMEM) and COmputer Programme to calculate Emissions from Road Transport (COPERT) model. Traffic data of all vehicle categories under normal driving conditions including average vehicle speed limits and local meteorological conditions were included in the modeling study. The analysis of monitoring data showed that hourly (00:00 to 23:00) concentrations of CO were within the US EPA limits, while NOx concentration was exceeded in most locations. Also, the measured pollutant levels were consistent with hourly peak and off-peak traffic volumes. The overall primary statistical performance measures showed that COPERT model was better than CMEM due to the high sensitivity of CMEM to the local meteorological factors. The best fractional bias (0.47 and 0.39), normalized mean square error (0.44 and 0.50), correlation coefficient (0.64 and 0.70), geometric mean bias (1.07 and 1.57), and geometric variance (2.00 and 2.32) were obtained for CO and NOx, respectively. However, the bootstrap 95% CI estimates over normalized mean square error, fractional bias, and correlation coefficient for COPERT and CMEM were found to be statistically significant from 0 in the case of combined model comparison across all the traffic locations for both CO and NOx. In overall, certain roads showed weak performance mainly due to the terrain features and the lack of reliable background concentrations, which need to be considered in the future study.
AB - A detailed investigation was carried out to assess the concentration of near-road traffic-related air pollution (TRAP) using a dispersion model in Muscat. Two ambient air quality monitoring (AQM) stations were utilized separately at six locations near major roadways (each location for 2 months) to monitor carbon monoxide (CO) and nitrogen oxides (NOx). The study aimed to measure the concentration of near-road TRAP in a city hot spots and develop a validated dispersion model via performance measures. The US Environmental Protection Agency (US EPA) Line Source Model was implemented in which the pollutant emission factors were obtained through Comprehensive Modal Emission Model (CMEM) and COmputer Programme to calculate Emissions from Road Transport (COPERT) model. Traffic data of all vehicle categories under normal driving conditions including average vehicle speed limits and local meteorological conditions were included in the modeling study. The analysis of monitoring data showed that hourly (00:00 to 23:00) concentrations of CO were within the US EPA limits, while NOx concentration was exceeded in most locations. Also, the measured pollutant levels were consistent with hourly peak and off-peak traffic volumes. The overall primary statistical performance measures showed that COPERT model was better than CMEM due to the high sensitivity of CMEM to the local meteorological factors. The best fractional bias (0.47 and 0.39), normalized mean square error (0.44 and 0.50), correlation coefficient (0.64 and 0.70), geometric mean bias (1.07 and 1.57), and geometric variance (2.00 and 2.32) were obtained for CO and NOx, respectively. However, the bootstrap 95% CI estimates over normalized mean square error, fractional bias, and correlation coefficient for COPERT and CMEM were found to be statistically significant from 0 in the case of combined model comparison across all the traffic locations for both CO and NOx. In overall, certain roads showed weak performance mainly due to the terrain features and the lack of reliable background concentrations, which need to be considered in the future study.
KW - AERMOD
KW - Air pollution
KW - CMEM
KW - COPERT IV
KW - Emissions
KW - Road traffic
UR - http://www.scopus.com/inward/record.url?scp=85086001574&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086001574&partnerID=8YFLogxK
U2 - 10.1007/s11356-020-09215-z
DO - 10.1007/s11356-020-09215-z
M3 - Article
C2 - 32488708
AN - SCOPUS:85086001574
SN - 0944-1344
VL - 27
SP - 31184
EP - 31201
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 25
ER -