Elucidating the mechanism of peptide interaction with membranes using the intrinsic fluorescence of tryptophan

Perpendicular penetration of cecropin B-like peptides into Pseudomonas aeruginosa

Osama K. Abou-Zied, Abdelahhad Barbour, Nada A. Al-Sharji, Koshy Philip

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

The importance of small molecular weight antimicrobial peptides as novel therapeutic agents stems from their ability to act against bacteria, viruses, and fungi. As part of the innate immune system, they are also capable of killing cancerous cells. Herein, we study the interaction between a synthetic cecropin B peptide and a target Pseudomonas aeruginosa (PA) membrane using steady-state and time-resolved fluorescence measurements in order to elucidate the mechanism of membrane rupture. The importance of synthetic cecropin B as a therapeutic peptide stems from its effect against a wide range of bacteria which is indistinguishable from that of naturally occuring cecropins. Fluorescence of cecropin B results from the sole tryptophan residue in the peptide. In order to understand the mechansim of peptide-membrane binding, we modified the original peptide (cecropin B1: KWKVFKKIEKMGRNIRNGIV) by attaching a terminal tryptophan residue (cecropin B2: KWKVFKKIEKMGRNIRNGIVW). Both peptides show a large inhibition effect against a wide range of bacteria, compared to naturally occurring peptides. The fluorescence results show an enhancement in the peak intensity of cecropin B1 upon mixing with the membrane, accompanied by a blue shift. For cecropin B2, a blue shift was observed upon mixing with the PA membrane, but no enhancement in intensity was observed. The results indicate perpendicular penetration of cecropins B1 and B2 from the Lys side where the Trp residue of cecropin B1 is immersed in the PA membrane. Partial quenching of the Trp fluorescence by acrylamide was observed and the values of the Stern-Volmer constants (Ksv) indicate that the Trp molecule penetrates into the membrane, but resides close to the interface region. Two fluorescence lifetimes were measured for the cecropin B1-PA complex which are for two rotamers of Trp. The results point to a degree of flexibility of the local environment around the Trp molecule. A mechanism of membrane disruption is proposed in which the cecropin peptide creates cracks through the negatively charged outer membrane of PA.

Original languageEnglish
Pages (from-to)14214-14220
Number of pages7
JournalRSC Advances
Volume5
Issue number19
DOIs
Publication statusPublished - 2015

Fingerprint

Cecropins
Tryptophan
Peptides
Fluorescence
Membranes
Bacteria
Insecta cecropin B protein
Molecules
Acrylamide
Immune system
Fungi
Viruses
Quenching
Molecular weight

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Chemistry(all)

Cite this

Elucidating the mechanism of peptide interaction with membranes using the intrinsic fluorescence of tryptophan : Perpendicular penetration of cecropin B-like peptides into Pseudomonas aeruginosa. / Abou-Zied, Osama K.; Barbour, Abdelahhad; Al-Sharji, Nada A.; Philip, Koshy.

In: RSC Advances, Vol. 5, No. 19, 2015, p. 14214-14220.

Research output: Contribution to journalArticle

@article{6278eb4dc58847b08bddd4aece0508d1,
title = "Elucidating the mechanism of peptide interaction with membranes using the intrinsic fluorescence of tryptophan: Perpendicular penetration of cecropin B-like peptides into Pseudomonas aeruginosa",
abstract = "The importance of small molecular weight antimicrobial peptides as novel therapeutic agents stems from their ability to act against bacteria, viruses, and fungi. As part of the innate immune system, they are also capable of killing cancerous cells. Herein, we study the interaction between a synthetic cecropin B peptide and a target Pseudomonas aeruginosa (PA) membrane using steady-state and time-resolved fluorescence measurements in order to elucidate the mechanism of membrane rupture. The importance of synthetic cecropin B as a therapeutic peptide stems from its effect against a wide range of bacteria which is indistinguishable from that of naturally occuring cecropins. Fluorescence of cecropin B results from the sole tryptophan residue in the peptide. In order to understand the mechansim of peptide-membrane binding, we modified the original peptide (cecropin B1: KWKVFKKIEKMGRNIRNGIV) by attaching a terminal tryptophan residue (cecropin B2: KWKVFKKIEKMGRNIRNGIVW). Both peptides show a large inhibition effect against a wide range of bacteria, compared to naturally occurring peptides. The fluorescence results show an enhancement in the peak intensity of cecropin B1 upon mixing with the membrane, accompanied by a blue shift. For cecropin B2, a blue shift was observed upon mixing with the PA membrane, but no enhancement in intensity was observed. The results indicate perpendicular penetration of cecropins B1 and B2 from the Lys side where the Trp residue of cecropin B1 is immersed in the PA membrane. Partial quenching of the Trp fluorescence by acrylamide was observed and the values of the Stern-Volmer constants (Ksv) indicate that the Trp molecule penetrates into the membrane, but resides close to the interface region. Two fluorescence lifetimes were measured for the cecropin B1-PA complex which are for two rotamers of Trp. The results point to a degree of flexibility of the local environment around the Trp molecule. A mechanism of membrane disruption is proposed in which the cecropin peptide creates cracks through the negatively charged outer membrane of PA.",
author = "Abou-Zied, {Osama K.} and Abdelahhad Barbour and Al-Sharji, {Nada A.} and Koshy Philip",
year = "2015",
doi = "10.1039/c4ra15246h",
language = "English",
volume = "5",
pages = "14214--14220",
journal = "RSC Advances",
issn = "2046-2069",
publisher = "Royal Society of Chemistry",
number = "19",

}

TY - JOUR

T1 - Elucidating the mechanism of peptide interaction with membranes using the intrinsic fluorescence of tryptophan

T2 - Perpendicular penetration of cecropin B-like peptides into Pseudomonas aeruginosa

AU - Abou-Zied, Osama K.

AU - Barbour, Abdelahhad

AU - Al-Sharji, Nada A.

AU - Philip, Koshy

PY - 2015

Y1 - 2015

N2 - The importance of small molecular weight antimicrobial peptides as novel therapeutic agents stems from their ability to act against bacteria, viruses, and fungi. As part of the innate immune system, they are also capable of killing cancerous cells. Herein, we study the interaction between a synthetic cecropin B peptide and a target Pseudomonas aeruginosa (PA) membrane using steady-state and time-resolved fluorescence measurements in order to elucidate the mechanism of membrane rupture. The importance of synthetic cecropin B as a therapeutic peptide stems from its effect against a wide range of bacteria which is indistinguishable from that of naturally occuring cecropins. Fluorescence of cecropin B results from the sole tryptophan residue in the peptide. In order to understand the mechansim of peptide-membrane binding, we modified the original peptide (cecropin B1: KWKVFKKIEKMGRNIRNGIV) by attaching a terminal tryptophan residue (cecropin B2: KWKVFKKIEKMGRNIRNGIVW). Both peptides show a large inhibition effect against a wide range of bacteria, compared to naturally occurring peptides. The fluorescence results show an enhancement in the peak intensity of cecropin B1 upon mixing with the membrane, accompanied by a blue shift. For cecropin B2, a blue shift was observed upon mixing with the PA membrane, but no enhancement in intensity was observed. The results indicate perpendicular penetration of cecropins B1 and B2 from the Lys side where the Trp residue of cecropin B1 is immersed in the PA membrane. Partial quenching of the Trp fluorescence by acrylamide was observed and the values of the Stern-Volmer constants (Ksv) indicate that the Trp molecule penetrates into the membrane, but resides close to the interface region. Two fluorescence lifetimes were measured for the cecropin B1-PA complex which are for two rotamers of Trp. The results point to a degree of flexibility of the local environment around the Trp molecule. A mechanism of membrane disruption is proposed in which the cecropin peptide creates cracks through the negatively charged outer membrane of PA.

AB - The importance of small molecular weight antimicrobial peptides as novel therapeutic agents stems from their ability to act against bacteria, viruses, and fungi. As part of the innate immune system, they are also capable of killing cancerous cells. Herein, we study the interaction between a synthetic cecropin B peptide and a target Pseudomonas aeruginosa (PA) membrane using steady-state and time-resolved fluorescence measurements in order to elucidate the mechanism of membrane rupture. The importance of synthetic cecropin B as a therapeutic peptide stems from its effect against a wide range of bacteria which is indistinguishable from that of naturally occuring cecropins. Fluorescence of cecropin B results from the sole tryptophan residue in the peptide. In order to understand the mechansim of peptide-membrane binding, we modified the original peptide (cecropin B1: KWKVFKKIEKMGRNIRNGIV) by attaching a terminal tryptophan residue (cecropin B2: KWKVFKKIEKMGRNIRNGIVW). Both peptides show a large inhibition effect against a wide range of bacteria, compared to naturally occurring peptides. The fluorescence results show an enhancement in the peak intensity of cecropin B1 upon mixing with the membrane, accompanied by a blue shift. For cecropin B2, a blue shift was observed upon mixing with the PA membrane, but no enhancement in intensity was observed. The results indicate perpendicular penetration of cecropins B1 and B2 from the Lys side where the Trp residue of cecropin B1 is immersed in the PA membrane. Partial quenching of the Trp fluorescence by acrylamide was observed and the values of the Stern-Volmer constants (Ksv) indicate that the Trp molecule penetrates into the membrane, but resides close to the interface region. Two fluorescence lifetimes were measured for the cecropin B1-PA complex which are for two rotamers of Trp. The results point to a degree of flexibility of the local environment around the Trp molecule. A mechanism of membrane disruption is proposed in which the cecropin peptide creates cracks through the negatively charged outer membrane of PA.

UR - http://www.scopus.com/inward/record.url?scp=84922749992&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84922749992&partnerID=8YFLogxK

U2 - 10.1039/c4ra15246h

DO - 10.1039/c4ra15246h

M3 - Article

VL - 5

SP - 14214

EP - 14220

JO - RSC Advances

JF - RSC Advances

SN - 2046-2069

IS - 19

ER -