Data-driven analyses of low salinity waterflooding in carbonates

Rashida Salimova, Peyman Pourafshary*, Lei Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Low salinity water (LSW) injection is a promising Enhanced Oil Recovery (EOR) technique that has the potential to improve oil recovery and has been studied by many researchers. LSW flooding in carbonates has been widely evaluated by coreflooding tests in prior studies. A closer look at the literature on LSW in carbonates indicates a number of gaps and shortcomings. It is difficult to understand the exact relationship between different controlling parameters and the LSW effect in carbonates. The active mechanisms involved in oil recovery improvement are still uncertain and more analyses are required. To predict LSW performance and study the mechanisms of oil displacement, data collected from available experimental studies on LSW injection in carbonates were analyzed using data analysis approaches. We used linear regression to study the linear relationships between single parameters and the incremental recovery factor (RF). Correlations between rock, oil, and brine properties and tertiary RF were weak and negligible. Subsequently, we analyzed the effect of oil/brine parameters on LSW performance using multivariable linear regression. Relatively strong linear correlations were found for a combination of oil/brine parameters and RF. We also studied the nonlinear relationships between parameters by applying machine learning (ML) nonlinear models, such as artificial neural network (ANN), support vector machine (SVM), and decision tree (DT). These models showed better data fitting results compared to linear regression. Among the applied ML models, DT provided the best correlation for oil/brine parameters, as ANN and SVM overfitted the testing data. Finally, different mechanisms involved in the LSW effect were analyzed based on the changes in the effluent PDIs concentration, interfacial tension, pH, zeta potential, and pressure drop.

Original languageEnglish
Article number6651
JournalApplied Sciences (Switzerland)
Volume11
Issue number14
DOIs
Publication statusPublished - Jul 2 2021
Externally publishedYes

Keywords

  • ANN
  • Carbonates
  • Data-driven analysis
  • DT
  • Low salinity waterflooding
  • Machine learning
  • SVM

ASJC Scopus subject areas

  • Materials Science(all)
  • Instrumentation
  • Engineering(all)
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Cite this