Capillary fringe and unsaturated flow in a porous reservoir bank

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Steady, 2D Darcian seepage from a zero-depth reservoir into a homogeneous porous bank is studied analytically. Using the Green-Ampt assumption for hydraulic conductivity as a function of pressure and the Vedernikov model for the tension-saturated zone, a free boundary problem with the capillary fringe spread along the bank surface is solved. Accurate direct calculations are made for the extent of the capillary rise along a vertical and horizontal bank. Unsaturated flow from a vertical phreatic surface into a bank with either an impermeable or isobaric vertical soil slope is analyzed in terms of the Philip model. Explicit expressions for the Darcian velocity components, stream function, and/or Kirchhoff potential are presented. The flow topology and characteristics are shown to depend strongly on the boundary condition at the soil surface.

Original languageEnglish
Pages (from-to)403-409
Number of pages7
JournalJournal of Irrigation and Drainage Engineering
Volume130
Issue number5
DOIs
Publication statusPublished - Sep 2004

Keywords

  • Free surfaces
  • Porous media
  • Reservoirs
  • Seepage
  • Soil suction
  • Unsaturated flow

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Water Science and Technology
  • Civil and Structural Engineering

Fingerprint Dive into the research topics of 'Capillary fringe and unsaturated flow in a porous reservoir bank'. Together they form a unique fingerprint.

  • Cite this