Application of groundwater flow model in assessing aquifer layers interaction in arid catchment area

S. Al-Hashmi, L. Gunawardhana, A. Sana, M. Baawain*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Sustainable groundwater aquifers are critical in arid and semiarid countries due to the scarcity of surface water and precipitation. Management of groundwater resources requires estimation of aquifer properties and interaction between multilayers in heterogeneous aquifers. A three-dimensional groundwater flow model was implemented to simulate a complex multilayer aquifer in Oman. Steady-state model was calibrated using groundwater level data in July 2016. Both the automated parameter calibration technique and manual trial and error method were applied for calibrating hydraulic conductivity, groundwater recharge, and anisotropy of soil layers. The optimum set of parameters of 14 observation wells was obtained from the simulation with minimum root mean square error of 0.8 m for groundwater water level. The calibrated model was validated using measured data for October 2016, and root mean square error was found to be 0.81 m for groundwater water level. Among the observation wells which were used in the above analysis, 4 of them were directed to different aquifer depths and each two observation wells were in the same location. These two sets of wells, therefore, were used for analyzing interactions among different aquifer layers. Results showed that increased pumping rates enhanced water transfer between multilayers due to increased hydraulic gradient. The effect was more dominant in layers with high vertical hydraulic conductivity. Also, the sensitivity analysis was performed and results indicated that the predicted water level was less sensitive to vertical anisotropy. The findings of this study could be useful for decision-makers for better management of groundwater resources in arid regions.

Original languageEnglish
Pages (from-to)4577-4588
Number of pages12
JournalInternational Journal of Environmental Science and Technology
Volume17
Issue number11
DOIs
Publication statusPublished - Nov 1 2020

Keywords

  • MODFLOW
  • Multilayer aquifer
  • Numerical groundwater model
  • Wadi Samail catchment

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Agricultural and Biological Sciences(all)

Cite this