Optimization of reactor network design problem using jumping gene adaptation of differential evolution

Ashish M. Gujarathi, S. Purohit, B. Srikanth

نتاج البحث: المساهمة في مجلةConference articleمراجعة النظراء

1 اقتباس (Scopus)


Detailed working principle of jumping gene adaptation of differential evolution (DE-JGa) is presented. The performance of the DE-JGa algorithm is compared with the performance of differential evolution (DE) and modified DE (MDE) by applying these algorithms on industrial problems. In this study Reactor network design (RND) problem is solved using DE, MDE, and DE-JGa algorithms: These industrial processes are highly nonlinear and complex with reference to optimal operating conditions with many equality and inequality constraints. Extensive computational comparisons have been made for all the chemical engineering problems considered. The results obtained in the present study show that DE-JGa algorithm outperforms the other algorithms (DE and MDE). Several comparisons are made among the algorithms with regard to the number of function evaluations (NFE)/CPU- time required to find the global optimum. The standard deviation and the variance values obtained using DE-JGa, DE and MDE algorithms also show that the DE-JGa algorithm gives consistent set of results for the majority of the test problems and the industrial real world problems.

اللغة الأصليةEnglish
رقم المقال012044
دوريةJournal of Physics: Conference Series
مستوى الصوت622
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرPublished - يونيو 22 2015
الحدث3rd International Conference on Science and Engineering in Mathematics, Chemistry and Physics, ScieTech 2015 - Bali, Indonesia
المدة: يناير ٣١ ٢٠١٥فبراير ١ ٢٠١٥

ASJC Scopus subject areas

  • ???subjectarea.asjc.3100???


أدرس بدقة موضوعات البحث “Optimization of reactor network design problem using jumping gene adaptation of differential evolution'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا