Maximal subgroups of the Coxeter group W(H4) and quaternions

Mehmet Koca, Ramazan Koç*, Muataz Al-Barwani, Shadia Al-Farsi

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

20 اقتباسات (Scopus)

ملخص

The largest finite subgroup of O(4) is the non-crystallographic Coxeter group W(H4) of order 14,400. Its derived subgroup is the largest finite subgroup W(H4)/Z2 of SO(4) of order 7200. Moreover, up to conjugacy, it has five non-normal maximal subgroups of orders 144, two 240, 400 and 576. Two groups [W(H2) × W(H2)]⋊ Z4 and W(H3) × Z2 possess non-crystallographic structures with orders 400 and 240 respectively. The groups of orders 144, 240 and 576 are the extensions of the Weyl groups of the root systems of SU(3) × SU(3), SU(5) and SO(8) respectively. We represent the maximal subgroups of W(H4) with sets of quaternion pairs acting on the quaternionic root systems.

اللغة الأصليةEnglish
الصفحات (من إلى)441-452
عدد الصفحات12
دوريةLinear Algebra and Its Applications
مستوى الصوت412
رقم الإصدار2-3
المعرِّفات الرقمية للأشياء
حالة النشرPublished - يناير 15 2006

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2602???
  • ???subjectarea.asjc.2600.2612???
  • ???subjectarea.asjc.2600.2608???
  • ???subjectarea.asjc.2600.2607???

بصمة

أدرس بدقة موضوعات البحث “Maximal subgroups of the Coxeter group W(H4) and quaternions'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا