ملخص
We prove that for any classical, compact, simple, connected Lie group G, the G-invariant orbital measures supported on non-trivial conjugacy classes satisfy a surprising L2-singular dichotomy: Either μhk ∈ L2 (G) or μhk is singular to the Haar measure on G. The minimum exponent k for which μhk ∈ L2 is specified; it depends on Lie properties of the element h ∈ G. As a corollary, we complete the solution to a classical problem - to determine the minimum exponent k such that μk ∈ L1 (G) for all central, continuous measures μ on G. Our approach to the singularity problem is geometric and involves studying the size of tangent spaces to the products of the conjugacy classes.
اللغة الأصلية | English |
---|---|
الصفحات (من إلى) | 1521-1573 |
عدد الصفحات | 53 |
دورية | Advances in Mathematics |
مستوى الصوت | 222 |
رقم الإصدار | 5 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | Published - ديسمبر 1 2009 |
ASJC Scopus subject areas
- ???subjectarea.asjc.2600???