Hierarchical neural network adaptive power system stabilizer

Naser Hœseinzadeh, Akhtar Kalam

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

6 اقتباسات (Scopus)


An adaptive power system stabilizer based on feedforward neural networks is proposed in this paper. A hierarchical architecture of neural networks consisting of two subnetworks is used. One subnetwork is used for the identification of the dynamics of the power system under study, and the other one is used as a stabilizer. The weights of the neural network stabilizer are adjusted according to the difference between the output of the neural network identifier and a desired output track. Both the neural network stabilizer and the neural network identifier are trained in succeeding stages by the backpropagation algorithm. An application of this scheme for regulating the speed of a synchronous power generator under fault conditions is described.

اللغة الأصليةEnglish
الصفحات (من إلى)28-33
عدد الصفحات6
دوريةInternational Journal of Power and Energy Systems
مستوى الصوت19
رقم الإصدار1
حالة النشرPublished - 1999

ASJC Scopus subject areas

  • ???subjectarea.asjc.2100.2102???
  • ???subjectarea.asjc.2200.2208???
  • ???subjectarea.asjc.2600.2604???


أدرس بدقة موضوعات البحث “Hierarchical neural network adaptive power system stabilizer'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا