Deep Learning-Based Intrusion Detection Systems: A Systematic Review

Jan Lansky, Saqib Ali, Mokhtar Mohammadi, Mohammed Kamal Majeed, Sarkhel H.Taher Karim, Shima Rashidi, Mehdi Hosseinzadeh, Amir Masoud Rahmani*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

17 اقتباسات (Scopus)

ملخص

Nowadays, the ever-increasing complication and severity of security attacks on computer networks have inspired security researchers to incorporate different machine learning methods to protect the organizations' data and reputation. Deep learning is one of the exciting techniques which recently are vastly employed by the IDS or intrusion detection systems to increase their performance in securing the computer networks and hosts. This survey article focuses on the deep learning-based intrusion detection schemes and puts forward an in-depth survey and classification of these schemes. It first presents the primary background concepts about IDS architecture and various deep learning techniques. It then classifies these schemes according to the type of deep learning methods utilized in each of them. It describes how deep learning networks are utilized in the intrusion detection process to recognize intrusions accurately. Finally, a complete analysis of the investigated IDS frameworks is provided, and concluding remarks and future directions are highlighted.

اللغة الأصليةEnglish
رقم المقال9483916
الصفحات (من إلى)101574-101599
عدد الصفحات26
دوريةIEEE Access
مستوى الصوت9
المعرِّفات الرقمية للأشياء
حالة النشرPublished - 2021

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700???
  • ???subjectarea.asjc.2500???
  • ???subjectarea.asjc.2200???

بصمة

أدرس بدقة موضوعات البحث “Deep Learning-Based Intrusion Detection Systems: A Systematic Review'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا