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Dicyclic groups and Frobenius manifolds

Yassir Dinar Zainab Al-Maamari

Abstract

The orbits space of an irreducible representation of a finite group is a variety whose coordinate ring
is finitely generated by homogeneous invariant polynomials. Boris Dubrovin showed that the orbits
spaces of the reflection groups acquire the structure of polynomial Frobenius manifolds. Dubrovin’s
method to construct examples of Frobenius manifolds on orbits spaces was carried for other linear
representations of discrete groups which have in common that the coordinate rings of the the orbits
spaces are polynomial rings. In this article, we show that the orbits space of an irreducible represen-
tation of a Dicyclic group acquire two structures of Frobenius manifolds. The coordinate ring of this
orbits space is not a polynomial ring.
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1 Introduction

The notion of Frobenius manifold was introduced by Boris Dubrovin as a geometric realization of a
potential F satisfying a system of partial differential equations known in topological fields theory as
WDVV equations [6]. Beside topological fields theory, Frobenius manifolds appear in many fields like
invariant theory, integrable systems, quantum cohomology and singularity theory. This article contributes
to the relation between Frobenius manifolds and invariant theory.

Let W be a finite group of linear transformations acting on a complex vector space V of dimention r.
Then the orbits space M = V/W of this group is a variety whose coordinate ring is the ring of invariant
polynomials C[V ]W. The ring C[V ]W is finitely generated by homogeneous polynomials. If f1, f2, . . . , fm
is a set of such generators then m ≥ r and the relation between them is called syzygies. The set of
generators are not unique, nor are their degrees [11],[4].

An element w ∈ W is called a reflection if it fixes a subspace of V of codimention one pointwise.
The group W is called a complex reflection group if it is generated by reflections. Then Shephard-
Todd-Chevalley theorem states that W is a reflection group if and only if the invariant ring C[V ]W is
a polynomial ring [11], i.e. it is generated by r algebraically independent homogeneous polynomials (so

1

http://arxiv.org/abs/2006.05216v2


there are no syzygies). Furthermore, when W is a reflection group, the degrees of such a set generators
of C[V ]W are uniquely specified by the group and we refer to them as the degrees of W.

Let us assume W is a Shephard group, i.e. a symmetry group of a regular complex polytope. Then
W is a reflection group. Let f1, f2, . . . , fr be a set of algebraically independent homogeneous generators
of C[V ]W. We assume that degree fi is less than or equal degree fj when i < j. Then the inverse of
the Hessian of f1 defines a flat metric (·, ·)2 on T ∗M [12]. There is another flat metric (·, ·)1 on T ∗M ,
which was studied initially by K. Saito ([13], [14]), defined as the Lie derivative of (·, ·)2 along the vector
field e = ∂fr . The two metrics form what is called a flat pencil of metrics (more details are given below).
Dubrovin used the properties of this flat pencil of metrics to construct polynomial Frobenius manifolds
[10] (see [7] and [15] for the case of Coxeter groups). This article is about applying Dubrovin’s method
for other finite linear groups than Shephard groups.

Dubrovin’s method to construct Frobenius manifolds, through finding flat pencils of metrics on orbits
spaces, was carried out for infinite linear groups like extended affine Weyl groups [8], [9], Jacobi groups [3]
and recently a new extension of affine Weyl groups [16]. They all have in common that the invariant rings
are polynomial rings. Moreover, even when considering a generalization of Frobenius manifold structure
on orbits spaces, many results was obtained under the assumption that the invariant ring is a polynomial
ring [2]. Then it is natural question to ask about applying Dubrovin’s method on orbits spaces of finite
non-reflection groups.

In this article we apply Dubrovin’s method and construct Frobenius manifolds on orbits spaces of
Dicyclic groups. The resulting Frobenius manifolds can be obtained by using an ad-hoc procedure, but it
is fascinating to find them on orbits spaces of some group. Precisely, we will show that the orbits space of
the Dicyclic group of order 4n is endowed with two structure of Frobenius manifolds which up to scaling
has the following potential

F(z1, z2) = zk1 +
1

2
z22z1, k =

3− d

1− d
(1.1)

where d is 2+
√
3n√

3n
or 2−

√
3n√

3n
.

To make the article as self-contained as possible, we review in next section the definition of Frobenius
manifold and its relation with the theory of flat pencils of metrics. In the last section we obtain the
promised Frobenius manifolds by direct calculations.

2 Preliminaries

2.1 Frobenius manifolds

A Frobenius algebra is a commutative associative algebra with unity e and an invariant nondegenerate
bilinear form < ·, · >. A Frobenius manifold is a manifold M with a smooth structure of a Frobenius
algebra on the tangent space TtM at any point t ∈ M with certain compatibility conditions [6]. Globally,
we require the metric < ·, · > to be flat and the unity vector field e to be covariantly constant with
respect to it. In the flat coordinates (t1, ..., tr) where e = ∂

∂tr
the compatibility conditions imply that

there exists a function F(t1, ..., tr) such that

ηij =< ∂ti , ∂tj >= ∂tr∂ti∂tjF(t)

and the structure constants of the Frobenius algebra are given by

Ck
ij =

∑

p

Ωkp
1 ∂tp∂ti∂tjF(t)
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where Ωij
1 denote the inverse of the matrix ηij . In this work, we consider Frobenius manifolds where the

quasihomogeneity condition takes the form

r
∑

i=1

dit
i∂tiF(t) = (3− d)F(t); dr = 1. (2.1)

This condition defines the degrees di and the charge d of the Frobenius structure. The associativity
of the Frobenius algebra implies that the potential F(t) satisfies a system of partial differential equations
which appears in topological field theory and is called Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equa-
tions:

∑

k,p

∂ti∂tj∂tkF(t) Ω
kp
1 ∂tp∂tq∂tnF(t) =

∑

k,p

∂tn∂tj∂tkF(t) Ω
kp
1 ∂tp∂tq∂tiF(t), ∀i, j, q, n. (2.2)

Detailed information about Frobenius manifolds and related topics can be found in [6].

2.2 Flat pencil of metrics and Frobenius manifolds

In this section we review the relation between the geometry of flat pencil of metrics and Frobenius
manifolds. See [5] for details.

Let M be a smooth manifold of dimension r. A symmetric bilinear form (·, ·) on T ∗M is called
a contravariant metric if it is invertible on an open dense subset M0 ⊂ M . In local coordinates
(u1, ..., ur), if we set

Ωij(u) = (dui, duj); i, j = 1, ..., r. (2.3)

Then the inverse matrix Ωij(u) of Ω
ij(u) determines a metric < ·, · > on TM0. We define the contravari-

ant Christoffel symbols Γij
k of (·, ·) by Γij

k := −
∑

sΩ
isΓj

sk where Γj
sk are the Christoffel symbols of

< ·, · >. We say the metric (·, ·) is flat if < ·, · > is flat.

Let (·, ·)1 and (·, ·)2 be two contravariant flat metrics on M and denote their Christoffel symbols by
Γij
1;k(u) and Γij

2;k(u) respectively. We say (·, ·)1 and (·, ·)2 form a flat pencil of metrics if (·, ·)λ :=
(·, ·)1 + λ(·, ·)2 defines a flat metric on T ∗M for a generic λ and its Christoffel symbols are given by
Γij
λ;k(u) = Γij

2;k(u) + λΓij
1;k(u).

Let (·, ·)1 and (·, ·)2 be two contravariant metrics on M and denote their matrices by Ωij
1 (u) and

Ωij
2 (u), respectively, in some coordinates (u1, . . . , ur). Suppose that they form a flat pencil of metrics.

This flat pencil of metrics is called quasihomogeneous of degree d if there exists a function τ on M
such that the vector fields

E := ∇2τ, Ei =
∑

s

Ωis
2 ∂sτ (2.4)

e := ∇1τ, ei =
∑

s

Ωis
1 ∂sτ

satisfy the following relations

[e,E] = e, LieE( , )2 = (d− 1)( , )2, Liee( , )2 = ( , )1, Liee( , )1 = 0.

Here LieX denote the Lie derivative along a given vector field X. In addition, the quasihomogeneous flat
pencil of metrics is called regular if the (1,1)-tensor Rj

i =
d−1
2 δji +∇1iE

j is nondegenerate on M .

The following theorem due to Dubrovin gives a connection between the geometry of Frobenius man-
ifolds and flat pencils of metrics.
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Theorem 2.1. [5] A quasihomogeneous regular flat pencil of metrics of degree d on a manifold M defines
a Frobenius structure on M of charge d.

Let us assume the flat pencil of metrics on M is regular quasihomogeneous of degree d. Let (t1, . . . , tr)
be flat coordinates of (·, ·)1 where τ = t1, e = ∂tr and E =

∑

i dit
i∂ti . Let ηij denote the inverse of Ω

ij
1 (t).

Then it turns out that the potential F(t1, . . . , tr) is obtained from the equations

∂2
F

∂ti∂tj
=

∑

k,l

1

d− 1 + dk + dl
ηikηjlΩ

kl
2 (t) (2.5)

∂F

∂ti
=

1

(3− d− di)

∑

dkt
k ∂2

F

∂tk∂ti

F(t) =
1

3− d

∑

dkt
k ∂F

∂tk

It is well known that from a Frobenius manifold we always have a flat pencil of metrics but it does
not necessarily satisfy the regularity condition [5].

3 Dicyclic groups

Let n be a natural number greater that 1 and W be the matrix group generated by

σ :=

(

ξ 0
0 ξ−1

)

, α :=

(

0 1
−1 0

)

(3.1)

where ξ is a primitive 2n-th root of unity. Then σ and α satisfy the relations

σ2n = 1, α2 = σn, α−1σα = σ−1. (3.2)

Thus W is isomorphic to the dicyclic group of order 4n. The invariant ring of W is generated by the
following homogeneous polynomials [11]

u1 = x21x
2
2, u2 = x2n1 + x2n2 , u3 = x1x2(x

2n
1 − x2n2 ) (3.3)

subject to the relation
u23 − u1u

2
2 + 4un+1

1 = 0. (3.4)

The orbits space M of W is a variety isomorphic to the hypersurface T defined as the zero set of
equation (3.4) in C

3. Consider equation (3.4) as a quadratic equation in u3. Then any point p out of the
discriminant locus has small neighbourhood Up where u1 and u2 act as coordinates. In what follows we
assume that we fix such open set U ⊂ V with coordinates (u1, u2) and we omit the subscript p.

Let h be the Hessain matrix of u1, i.e. hij =
∂2u1

∂xi∂xj
and let h−1 denotes its inverse. Then, by direct

calculations, h−1 defines a flat contravariant metric (·, ·)2 on U . This metric, in the coordinates u1 and
u2, is given as follows

(·, ·)2 =

(

4
3u1

2n
3 u2

2n
3 u2 −2n2

3u1
(u22 − 6un1 )

)

; (dti, dtj)2 =
2
∑

k,l=1

∂ui
∂xk

∂uj
∂xl

h−1
kl . (3.5)

Let e be a vector field of the form f(u1)∂u2
, where f(u1) is any smooth function. Then, by direct

calculations, the Lie derivative (·, ·)1 of (·, ·)2 along e forms with (·, ·)2 a flat pencil of metrics. This metric
takes the value

(·, ·)1 =

(

0 2
3 (nf − 2u1f

′)
2
3 (nf − 2u1f

′) − 4
3u1

(

n2u2f + nu1u2f
′
)

)

. (3.6)
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The guess for the vector field to take this from was inspired by [1]. In order to get a quasihomogeneous
flat pencil of metrics, we need the Lie derivative of (·, ·)1 with respect to e to equal zero. This condition
leads to the following differential equation for f(u)

2nu1ff
′ − 2u21(f

′)2 + n2f2 = 0 (3.7)

which has two independent solutions

f+ = u
n
2
(1+

√
3)

1 and f− = u
n
2
(1−

√
3)

1 . (3.8)

Let us assume e = f+∂u2
= u

n
2
(1+

√
3)

1 ∂u2
. Then

(dti, dtj)1 =





0 − 2n√
3
u

1

2
(1+

√
3)n

1

− 2n√
3
u

1

2
(1+

√
3)n

1 −2
3

(

3 +
√
3
)

n2u
1

2
(1+

√
3)n−1

1 u2



 . (3.9)

It turns out that the two metrics (·, ·)2 and (·, ·)1 form a quasihomogeneous flat pencil of metrics with
degree

d =
2 +

√
3n√

3n
. (3.10)

In the notations of equations (2.4), we have τ = −
√
3

2n u1 and

E = − 2√
3n

u1∂u1
− 1√

3
u2∂u2

. (3.11)

This flat pencil of metrics is also regular since the (1, 1)-tensor Rj
i equals the nondegenerate matrix

(

− 1√
3n

0

0 1−n√
3n

)

. (3.12)

Flat coordinates for (·, ·)1 are obtained by setting

t1 = −
√
3

2n
u1, t2 = u2u

− 1

2
(1+

√
3)n

1 . (3.13)

In these coordinates we get

(·, ·)2 =

(

− 2√
3n
t1 t2

t2 21−
√
3n3

1

2
(
√
3n+1)n2 (−nt1)

−
√
3n−1

)

, (·, ·)1 =

(

0 1
1 0

)

(3.14)

The potential F+ of the corresponding Frobenius manifold is

F+ =
2−

√
3n3

1

2
(
√
3n+1) (−nt1)

1−
√
3n

3n2 − 1
+

1

2
t1t

2
2 (3.15)

Let us take e = f−∂u2 = u
n
2
(1−

√
3)

1 ∂u2
. Then similar to above, we get a regular quasihomogenous flat

pencil of metrics of degree

d =
2−

√
3n√

3n
(3.16)

5



with τ =
√
3

2n u1. The resulting potential will be

F− =
2
√
3n3

1

2
−

√

3n
2 (nt1)

√
3n+1

3n2 − 1
+

1

2
t1t

2
2. (3.17)

We repeat the calculation by taking (u1, u3) as coordinates instead of (u1, u2). It turns out that even
though the middle steps may differ in values, the resulting Frobenius manifolds are exactly the same as
those given by the potentials (3.15),(3.17).

We observe that Dubrovin computed by ad hoc procedure all possible potentials of 2-dimensional
Frobenius manifolds [6]. The potentials found in this article, after scaling, are listed by Dubrovin in the
form

F(z1, z2) = zk1 +
1

2
z22z1, k =

3− d

1− d
(3.18)

where d is 2+
√
3n√

3n
or 2−

√
3n√

3n
. However, finding it by using the method of a flat pencil of metrics on an

orbits space of a finite group that is not a reflection group is a surprising result.

The result reported in this article is a part of work in progress to apply Dubrovin’s method on orbits
spaces of finite groups to find new interesting examples of Frobenius manifolds. In future publications,
we will consider irreducible representations of Coxeter groups which are not reflection representations [1].
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