Abstract
This research presents a novel "zero-power" actuator for cryogenic conditions by combining a magnetostrictive bimetal with a bulk high temperature superconductor (HTS) sample. This actuator is based on two phenomena; "pinning effect", and "magnetostrictive bimetal". The relationship between displacement of actuator and applied current was measured when the thickness of the HTS samples was 1, 2, and 3 mm. It was found that because of pinning effect part of the magnetic flux (energy), generated by the coil can be trapped (stored) in the HTS samples. Consequently, the actuator can be held in the desired position when its power is switched off. "Holding range" of actuator is directly proportional to the thickness of the HTS samples. The holding range of 4.5 μm for 1 mm thickness of the HTS increases to 12 μm for 3 mm thickness. The controllability of the actuator over its holding range was also demonstrated.
Original language | English |
---|---|
Pages (from-to) | 787-791 |
Number of pages | 5 |
Journal | Sensors and Actuators, A: Physical |
Volume | 135 |
Issue number | 2 |
DOIs | |
Publication status | Published - Apr 15 2007 |
Keywords
- Cryogenic environments
- Galfenol
- High temperature superconductor
- Magnetostrictive bimetal
- Pinning effect
- Zero-power
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering