### Abstract

General expressions for the components of the Ricci collineation vector are derived and the related constraints are obtained. These constraints are then solved to obtain Ricci collineations and the related constraints on the Ricci tensor components for all spacetime manifolds (degenerate or non-degenerate, diagonal or non-diagonal) admitting symmetries larger than so(3) and already known results are recovered. A complete solution is achieved for the spacetime manifolds admitting so(3) as the maximal symmetry group with non-degenerate and non diagonal Ricci tensor components. It is interesting to point out that there appear cases with finite number of Ricci collineations although the Ricci tensor is degenerate and also the cases with infinitely many Ricci collineations even in the case of non-degenerate Ricci tensor. Interestingly, it is found that the spacetime manifolds with so(3) as maximal symmetry group may admit two extra proper Ricci collineations, although they do not admit a G_{5} as the maximal symmetry group. Examples are provided which show and clarify some comments made by Camci et al. [Camci, U., and Branes, A. (2002). Class. Quantum Grav. 19, 393-404]. Theorems are proved which correct the earlier claims made in [Carot, J., Nunez, L. A., and Percoco, U. (1997). Gen. Relutiv. Gravit. 29, 1223-1237; Contreras, G., Núñez, L. A., and Percolo, U. (2000). Gen. Relativ. Gravit. 32, 285-294].

Original language | English |
---|---|

Pages (from-to) | 915-936 |

Number of pages | 22 |

Journal | General Relativity and Gravitation |

Volume | 35 |

Issue number | 5 |

DOIs | |

Publication status | Published - May 2003 |

### Fingerprint

### Keywords

- Ricci Collineations
- Spacetime

### ASJC Scopus subject areas

- Physics and Astronomy(all)

### Cite this

**Towards a Complete Classification of Spherically Symmetric Lorentzian Manifolds According to Their Ricci Collineations.** / Ziad, M.

Research output: Contribution to journal › Article

}

TY - JOUR

T1 - Towards a Complete Classification of Spherically Symmetric Lorentzian Manifolds According to Their Ricci Collineations

AU - Ziad, M.

PY - 2003/5

Y1 - 2003/5

N2 - General expressions for the components of the Ricci collineation vector are derived and the related constraints are obtained. These constraints are then solved to obtain Ricci collineations and the related constraints on the Ricci tensor components for all spacetime manifolds (degenerate or non-degenerate, diagonal or non-diagonal) admitting symmetries larger than so(3) and already known results are recovered. A complete solution is achieved for the spacetime manifolds admitting so(3) as the maximal symmetry group with non-degenerate and non diagonal Ricci tensor components. It is interesting to point out that there appear cases with finite number of Ricci collineations although the Ricci tensor is degenerate and also the cases with infinitely many Ricci collineations even in the case of non-degenerate Ricci tensor. Interestingly, it is found that the spacetime manifolds with so(3) as maximal symmetry group may admit two extra proper Ricci collineations, although they do not admit a G5 as the maximal symmetry group. Examples are provided which show and clarify some comments made by Camci et al. [Camci, U., and Branes, A. (2002). Class. Quantum Grav. 19, 393-404]. Theorems are proved which correct the earlier claims made in [Carot, J., Nunez, L. A., and Percoco, U. (1997). Gen. Relutiv. Gravit. 29, 1223-1237; Contreras, G., Núñez, L. A., and Percolo, U. (2000). Gen. Relativ. Gravit. 32, 285-294].

AB - General expressions for the components of the Ricci collineation vector are derived and the related constraints are obtained. These constraints are then solved to obtain Ricci collineations and the related constraints on the Ricci tensor components for all spacetime manifolds (degenerate or non-degenerate, diagonal or non-diagonal) admitting symmetries larger than so(3) and already known results are recovered. A complete solution is achieved for the spacetime manifolds admitting so(3) as the maximal symmetry group with non-degenerate and non diagonal Ricci tensor components. It is interesting to point out that there appear cases with finite number of Ricci collineations although the Ricci tensor is degenerate and also the cases with infinitely many Ricci collineations even in the case of non-degenerate Ricci tensor. Interestingly, it is found that the spacetime manifolds with so(3) as maximal symmetry group may admit two extra proper Ricci collineations, although they do not admit a G5 as the maximal symmetry group. Examples are provided which show and clarify some comments made by Camci et al. [Camci, U., and Branes, A. (2002). Class. Quantum Grav. 19, 393-404]. Theorems are proved which correct the earlier claims made in [Carot, J., Nunez, L. A., and Percoco, U. (1997). Gen. Relutiv. Gravit. 29, 1223-1237; Contreras, G., Núñez, L. A., and Percolo, U. (2000). Gen. Relativ. Gravit. 32, 285-294].

KW - Ricci Collineations

KW - Spacetime

UR - http://www.scopus.com/inward/record.url?scp=0345867095&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0345867095&partnerID=8YFLogxK

U2 - 10.1023/A:1022911607865

DO - 10.1023/A:1022911607865

M3 - Article

VL - 35

SP - 915

EP - 936

JO - General Relativity and Gravitation

JF - General Relativity and Gravitation

SN - 0001-7701

IS - 5

ER -