Tidal effects on aquifer thermal regime

An analytical solution for coastal ecosystem management

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

An analytical model was developed to estimate the groundwater temperature change in the transition zone (intermediate zone between seawater and fresh groundwater) due to seawater and fresh groundwater temperature change in coastal aquifers. A set of type curves was developed in such a way that the curves account for the advection effect of groundwater flow and can be applied under different aquifer and tidal conditions to estimate the resulting temperature distribution. The proposed method will be important in evaluating the long-term effects of urbanization and climate change on coastal ecosystems where limited observation wells are available. The practical applicability of the composed methodology was tested in the Sendai plain. Continuous 1-h water level (from April, 2005 to July, 2007) and temperature (from May, 2007 to February, 2008) observations were made at three aquifer depths in each observation well at four locations to examine the temporal and spatial variations. Time series analysis was performed to find the correlations of the tidal and groundwater level fluctuations. Results of the preliminary analysis and the time series analysis indicated that the groundwater level within 20 m depth from the ground surface is more sensitive to the recharge from precipitation, while the depths below 20 m are greatly influenced by the tidal fluctuations. Reasonably high cross correlation (0.74) was found in tides with water level fluctuations, and it was also noted that the tidal effect on groundwater level fluctuation and temperature distribution significantly decays as the distance from the coast increases. The simulated temperature distribution from the proposed analytical solution shows good agreement with the observed temperature records. Among the hydrogeologic parameters, hydraulic conductivity has a robust influence in determining the pattern of temperature distribution within the sea water and fresh groundwater boundaries. Verified results in the Sendai plain indicated that the individual effect of seawater temperature change has a more profound effect on temperature change near to the coast than a fresh groundwater temperature change. Combined effects of temperature change at two boundaries within the range of ±1 °C will lead to a 0.4-1 °C temperature change at a distance 500 m away from the coast where in general, the coastal wetlands are located. These figures may be significant for maintaining or achieving the ecological balance of coastal ecosystems, and the findings of this research will assist planners and decision-makers in coastal environment management programs.

Original languageEnglish
Pages (from-to)377-390
Number of pages14
JournalJournal of Hydrology
Volume377
Issue number3-4
DOIs
Publication statusPublished - Oct 30 2009

Fingerprint

ecosystem management
thermal regime
aquifer
temperature
groundwater
seawater
time series analysis
coastal ecosystem
effect
coast
water level
well
coastal aquifer
coastal wetland
transition zone
groundwater flow
coastal zone
hydraulic conductivity
recharge
urbanization

Keywords

  • Coastal aquifers
  • Groundwater temperature
  • Seawater intrusion
  • Sendai plain
  • Tidal effects

ASJC Scopus subject areas

  • Water Science and Technology

Cite this

Tidal effects on aquifer thermal regime : An analytical solution for coastal ecosystem management. / Niroshana Gunawardhana, Luminda; Kazama, So.

In: Journal of Hydrology, Vol. 377, No. 3-4, 30.10.2009, p. 377-390.

Research output: Contribution to journalArticle

@article{4afc07a4168542799bef921b8dcf1f57,
title = "Tidal effects on aquifer thermal regime: An analytical solution for coastal ecosystem management",
abstract = "An analytical model was developed to estimate the groundwater temperature change in the transition zone (intermediate zone between seawater and fresh groundwater) due to seawater and fresh groundwater temperature change in coastal aquifers. A set of type curves was developed in such a way that the curves account for the advection effect of groundwater flow and can be applied under different aquifer and tidal conditions to estimate the resulting temperature distribution. The proposed method will be important in evaluating the long-term effects of urbanization and climate change on coastal ecosystems where limited observation wells are available. The practical applicability of the composed methodology was tested in the Sendai plain. Continuous 1-h water level (from April, 2005 to July, 2007) and temperature (from May, 2007 to February, 2008) observations were made at three aquifer depths in each observation well at four locations to examine the temporal and spatial variations. Time series analysis was performed to find the correlations of the tidal and groundwater level fluctuations. Results of the preliminary analysis and the time series analysis indicated that the groundwater level within 20 m depth from the ground surface is more sensitive to the recharge from precipitation, while the depths below 20 m are greatly influenced by the tidal fluctuations. Reasonably high cross correlation (0.74) was found in tides with water level fluctuations, and it was also noted that the tidal effect on groundwater level fluctuation and temperature distribution significantly decays as the distance from the coast increases. The simulated temperature distribution from the proposed analytical solution shows good agreement with the observed temperature records. Among the hydrogeologic parameters, hydraulic conductivity has a robust influence in determining the pattern of temperature distribution within the sea water and fresh groundwater boundaries. Verified results in the Sendai plain indicated that the individual effect of seawater temperature change has a more profound effect on temperature change near to the coast than a fresh groundwater temperature change. Combined effects of temperature change at two boundaries within the range of ±1 °C will lead to a 0.4-1 °C temperature change at a distance 500 m away from the coast where in general, the coastal wetlands are located. These figures may be significant for maintaining or achieving the ecological balance of coastal ecosystems, and the findings of this research will assist planners and decision-makers in coastal environment management programs.",
keywords = "Coastal aquifers, Groundwater temperature, Seawater intrusion, Sendai plain, Tidal effects",
author = "{Niroshana Gunawardhana}, Luminda and So Kazama",
year = "2009",
month = "10",
day = "30",
doi = "10.1016/j.jhydrol.2009.08.035",
language = "English",
volume = "377",
pages = "377--390",
journal = "Journal of Hydrology",
issn = "0022-1694",
publisher = "Elsevier",
number = "3-4",

}

TY - JOUR

T1 - Tidal effects on aquifer thermal regime

T2 - An analytical solution for coastal ecosystem management

AU - Niroshana Gunawardhana, Luminda

AU - Kazama, So

PY - 2009/10/30

Y1 - 2009/10/30

N2 - An analytical model was developed to estimate the groundwater temperature change in the transition zone (intermediate zone between seawater and fresh groundwater) due to seawater and fresh groundwater temperature change in coastal aquifers. A set of type curves was developed in such a way that the curves account for the advection effect of groundwater flow and can be applied under different aquifer and tidal conditions to estimate the resulting temperature distribution. The proposed method will be important in evaluating the long-term effects of urbanization and climate change on coastal ecosystems where limited observation wells are available. The practical applicability of the composed methodology was tested in the Sendai plain. Continuous 1-h water level (from April, 2005 to July, 2007) and temperature (from May, 2007 to February, 2008) observations were made at three aquifer depths in each observation well at four locations to examine the temporal and spatial variations. Time series analysis was performed to find the correlations of the tidal and groundwater level fluctuations. Results of the preliminary analysis and the time series analysis indicated that the groundwater level within 20 m depth from the ground surface is more sensitive to the recharge from precipitation, while the depths below 20 m are greatly influenced by the tidal fluctuations. Reasonably high cross correlation (0.74) was found in tides with water level fluctuations, and it was also noted that the tidal effect on groundwater level fluctuation and temperature distribution significantly decays as the distance from the coast increases. The simulated temperature distribution from the proposed analytical solution shows good agreement with the observed temperature records. Among the hydrogeologic parameters, hydraulic conductivity has a robust influence in determining the pattern of temperature distribution within the sea water and fresh groundwater boundaries. Verified results in the Sendai plain indicated that the individual effect of seawater temperature change has a more profound effect on temperature change near to the coast than a fresh groundwater temperature change. Combined effects of temperature change at two boundaries within the range of ±1 °C will lead to a 0.4-1 °C temperature change at a distance 500 m away from the coast where in general, the coastal wetlands are located. These figures may be significant for maintaining or achieving the ecological balance of coastal ecosystems, and the findings of this research will assist planners and decision-makers in coastal environment management programs.

AB - An analytical model was developed to estimate the groundwater temperature change in the transition zone (intermediate zone between seawater and fresh groundwater) due to seawater and fresh groundwater temperature change in coastal aquifers. A set of type curves was developed in such a way that the curves account for the advection effect of groundwater flow and can be applied under different aquifer and tidal conditions to estimate the resulting temperature distribution. The proposed method will be important in evaluating the long-term effects of urbanization and climate change on coastal ecosystems where limited observation wells are available. The practical applicability of the composed methodology was tested in the Sendai plain. Continuous 1-h water level (from April, 2005 to July, 2007) and temperature (from May, 2007 to February, 2008) observations were made at three aquifer depths in each observation well at four locations to examine the temporal and spatial variations. Time series analysis was performed to find the correlations of the tidal and groundwater level fluctuations. Results of the preliminary analysis and the time series analysis indicated that the groundwater level within 20 m depth from the ground surface is more sensitive to the recharge from precipitation, while the depths below 20 m are greatly influenced by the tidal fluctuations. Reasonably high cross correlation (0.74) was found in tides with water level fluctuations, and it was also noted that the tidal effect on groundwater level fluctuation and temperature distribution significantly decays as the distance from the coast increases. The simulated temperature distribution from the proposed analytical solution shows good agreement with the observed temperature records. Among the hydrogeologic parameters, hydraulic conductivity has a robust influence in determining the pattern of temperature distribution within the sea water and fresh groundwater boundaries. Verified results in the Sendai plain indicated that the individual effect of seawater temperature change has a more profound effect on temperature change near to the coast than a fresh groundwater temperature change. Combined effects of temperature change at two boundaries within the range of ±1 °C will lead to a 0.4-1 °C temperature change at a distance 500 m away from the coast where in general, the coastal wetlands are located. These figures may be significant for maintaining or achieving the ecological balance of coastal ecosystems, and the findings of this research will assist planners and decision-makers in coastal environment management programs.

KW - Coastal aquifers

KW - Groundwater temperature

KW - Seawater intrusion

KW - Sendai plain

KW - Tidal effects

UR - http://www.scopus.com/inward/record.url?scp=70349771918&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70349771918&partnerID=8YFLogxK

U2 - 10.1016/j.jhydrol.2009.08.035

DO - 10.1016/j.jhydrol.2009.08.035

M3 - Article

VL - 377

SP - 377

EP - 390

JO - Journal of Hydrology

JF - Journal of Hydrology

SN - 0022-1694

IS - 3-4

ER -