Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations

Muhammad H. Esmaiel, Hany A. Basuony, Mohamed K. Al-Nawasany, Musab M. Shulkamy, Ibrahim A. Shaaban, Ahmed M. Abuelela, Wajdi M. Zoghaib, Tarek A. Mohamed*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Raman (3700-100 cm-1) and infrared (4000-400 cm-1) spectra of 2,5-Dimercapto-1,3,4-thiadiazol (DMTD) were recorded in the solid phase. Six structures (1-6) were initially proposed for DMTD as a result of thiol-thione tautomerism and internal rotation(s) of thiol group(s) around the C-S bond. Quantum chemical calculations were carried out for an isolated molecule (1-6) using density functional theory (B3LYP) and ab initio MP2(full) methods utilizing 6-31G(d) and 6-311++G(d,p) basis sets which favor thiol-thione tautomerism (structure 4). Relaxed potential energy surface scans of structure 4 revealed an additional conformer (the thiol group is out-of-plane, structure 7) using the aforementioned methods at 6-311++G(d,p) basis set. For additional verification, plane-wave solid state calculations were carried out at PW91 and PBEsol came out in favor of conformer 7. This is in agreement with the computed/observed SH in-plane bending of S-7 (959/941 cm-1) rather than the one estimated at (880 cm-1) for S-4. Moreover, the observed split IR/Raman bands were found consistent with solid state calculated frequencies of S-7 assuming two molecules per unit cell bonded via H-bonding intermolecular interactions. Aided by vibrational frequency calculations, normal coordinate analysis, force constants and potential energy distributions (PEDs), a complete vibrational assignment for the observed IR and Raman bands is proposed herein. Furthermore, we have estimated the frontier molecular orbitals and atomic charges to account for the corrosion inhibition efficiency of DMTD along with its binding sites to the metal surface. Our results are discussed herein and compared to similar molecules whenever appropriate.

Original languageEnglish
Pages (from-to)415-440
Number of pages26
JournalZeitschrift fur Physikalische Chemie
Volume234
Issue number3
DOIs
Publication statusPublished - Mar 1 2020

Keywords

  • 2,5-Dimercapto-1,3,4-thiadiazol (DMTD)
  • Raman and infrared spectra
  • tautomerism
  • vibrational assignment and MP2 = full/DFT calculations

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations'. Together they form a unique fingerprint.

Cite this