TY - JOUR
T1 - The isopropylation of naphthalene over a beta zeolite with BEA topoplogy. The selectivity of the products
AU - Sugi, Y.
AU - Joseph, S.
AU - Ramadass, K.
AU - Sathish, C. I.
AU - Premkumar, S.
AU - Dasireddy, V. D.B.C.
AU - Yang, J. H.
AU - Al-Muhtaseb, Ala'a H.
AU - Liu, Q.
AU - Kubota, Y.
AU - Komura, K.
AU - Vinu, A.
N1 - Funding Information:
We acknowledge Mr. Anish Jones and Prof. Zeid AlOthman for their cooperation in this study.
Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/4
Y1 - 2021/4
N2 - The isopropylation of naphthalene (NP) was carried out over a BEA zeolite (BEA38; SiO2/Al2O3 = 38) focused on the selectivities for diisopropylnaphthalene (DIPN) and triisopropylnaphthalene (TriIPN) isomers. The isopropylation gave possible eight DIPN isomers including β,β- (2,6- and 2,7-), α,β- (1,3-, 1,6-, and 1,7-), and α,α- (1,4- and 1,5-). The catalysis over BEA works two types of controls: kinetic control operates to form predominantly bulky and unstable α,α-DIPN at low temperatures, and thermodynamic controls work for the predominant formation of the slim and stable β,β-DIPN at high temperatures, although the intermediately bulky and stable α,β-DIPN are the major products through both controls. The enhanced selectivities for β,β-DIPN were observed at the early stages of the catalysis in the range of 200−300 °C, which operate under new type of thermodynamic control over fresh catalyst through thermodynamically preferred transition states; however, they decreased with the increase in the selectivities for α,α- and α,β-DIPN, and converged after prolonged reaction period. The isopropylation of DIPN isomers gives TriIPN isomers: unstable and bulky 1,3,5- and 1,4,6-TriIPN with α,α,β-substitution, and stable and slim 1,3,7- and 1,3,6-TriIPN with α,β,β-substitution. The low temperatures favor the former isomers, whereas the selectivity for the latter isomers increases with increasing reaction temperature. These results indicate that TriIPN isomers principally form under kinetic control at low temperatures, and thermodynamic controls participate in the catalysis at high temperatures. The selectivities for TriIPN isomers kept constant during the reaction at all temperatures: 200, 250, and 300 °C. The catalysis occurs inside the BEA channels and allow even the formation of bulky 1,3,5- and 1,4,6-TriIPN; however, all isomers cannot be isomerized to the others in the channels and on the external surfaces. Severe coke-deposition occurred during the catalysis, particularly in the early stages; however, the catalyst is recovered by the calcination with a small change in catalytic activity.
AB - The isopropylation of naphthalene (NP) was carried out over a BEA zeolite (BEA38; SiO2/Al2O3 = 38) focused on the selectivities for diisopropylnaphthalene (DIPN) and triisopropylnaphthalene (TriIPN) isomers. The isopropylation gave possible eight DIPN isomers including β,β- (2,6- and 2,7-), α,β- (1,3-, 1,6-, and 1,7-), and α,α- (1,4- and 1,5-). The catalysis over BEA works two types of controls: kinetic control operates to form predominantly bulky and unstable α,α-DIPN at low temperatures, and thermodynamic controls work for the predominant formation of the slim and stable β,β-DIPN at high temperatures, although the intermediately bulky and stable α,β-DIPN are the major products through both controls. The enhanced selectivities for β,β-DIPN were observed at the early stages of the catalysis in the range of 200−300 °C, which operate under new type of thermodynamic control over fresh catalyst through thermodynamically preferred transition states; however, they decreased with the increase in the selectivities for α,α- and α,β-DIPN, and converged after prolonged reaction period. The isopropylation of DIPN isomers gives TriIPN isomers: unstable and bulky 1,3,5- and 1,4,6-TriIPN with α,α,β-substitution, and stable and slim 1,3,7- and 1,3,6-TriIPN with α,β,β-substitution. The low temperatures favor the former isomers, whereas the selectivity for the latter isomers increases with increasing reaction temperature. These results indicate that TriIPN isomers principally form under kinetic control at low temperatures, and thermodynamic controls participate in the catalysis at high temperatures. The selectivities for TriIPN isomers kept constant during the reaction at all temperatures: 200, 250, and 300 °C. The catalysis occurs inside the BEA channels and allow even the formation of bulky 1,3,5- and 1,4,6-TriIPN; however, all isomers cannot be isomerized to the others in the channels and on the external surfaces. Severe coke-deposition occurred during the catalysis, particularly in the early stages; however, the catalyst is recovered by the calcination with a small change in catalytic activity.
KW - BEA
KW - DIPN
KW - Isopropylation
KW - NP
KW - TriIPN
UR - http://www.scopus.com/inward/record.url?scp=85102899123&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102899123&partnerID=8YFLogxK
U2 - 10.1016/j.mcat.2021.111521
DO - 10.1016/j.mcat.2021.111521
M3 - Article
AN - SCOPUS:85102899123
SN - 2468-8231
VL - 505
JO - Molecular Catalysis
JF - Molecular Catalysis
M1 - 111521
ER -