The costs of crest induction for Daphnia carinata

Research output: Contribution to journalArticle

52 Citations (Scopus)

Abstract

The effects of notonectid-induced crests on growth and reproduction, and resource allocation to crest construction, moult losses and eggs of Daphnia carinata were measured. An attempt was made to elucidate the mechanisms of physiological costs of crest induction for this species. The crested morph of d. carinata reached a significantly larger size than the uncrested form. Reproductive output was similar in early instars, but the crested morph produced more eggs in latter broods. Instar duration was longer for the crested morph and age at first reproduction was delayed. Survival was also lower in this form. Crest construction required significant resources (equivalent to 60 eggs over a life time) but evidence is presented that these resources were obtained primarily by re-allocation of available material rather than collection of extra resources. The crested morph allocated significantly more resources to moulting than its uncrested counter-parts. The uncrested morph produced large eggs in early instars and progressively smaller ones in later instars. The crested morph produced only small eggs. The hypothesis is presented that the crest-induction strategy of D. carinata involves at least two separate sets of responses, each with its own costs and trade-offs. The first response is production of the crest. The cost of crest production is an increased cost of moulting. D. carinata off sets this cost by increasing instar duration and thus age at reproduction. The second response is increased size. D. carinata achieves this by reducing the fraction of available resources allocated to reproduction. The cost is lower reproductive output.

Original languageEnglish
Pages (from-to)278-288
Number of pages11
JournalOecologia
Volume97
Issue number2
DOIs
Publication statusPublished - Mar 1994

Fingerprint

Daphnia carinata
instars
egg
molting
cost
resource
reproductive performance
duration
resource allocation
molt

Keywords

  • Crest induction
  • Daphnia
  • Energetic costs

ASJC Scopus subject areas

  • Ecology

Cite this

The costs of crest induction for Daphnia carinata. / Barry, Michael J.

In: Oecologia, Vol. 97, No. 2, 03.1994, p. 278-288.

Research output: Contribution to journalArticle

@article{c42fa21c5f9d4ad4aabb03ca62dcd48e,
title = "The costs of crest induction for Daphnia carinata",
abstract = "The effects of notonectid-induced crests on growth and reproduction, and resource allocation to crest construction, moult losses and eggs of Daphnia carinata were measured. An attempt was made to elucidate the mechanisms of physiological costs of crest induction for this species. The crested morph of d. carinata reached a significantly larger size than the uncrested form. Reproductive output was similar in early instars, but the crested morph produced more eggs in latter broods. Instar duration was longer for the crested morph and age at first reproduction was delayed. Survival was also lower in this form. Crest construction required significant resources (equivalent to 60 eggs over a life time) but evidence is presented that these resources were obtained primarily by re-allocation of available material rather than collection of extra resources. The crested morph allocated significantly more resources to moulting than its uncrested counter-parts. The uncrested morph produced large eggs in early instars and progressively smaller ones in later instars. The crested morph produced only small eggs. The hypothesis is presented that the crest-induction strategy of D. carinata involves at least two separate sets of responses, each with its own costs and trade-offs. The first response is production of the crest. The cost of crest production is an increased cost of moulting. D. carinata off sets this cost by increasing instar duration and thus age at reproduction. The second response is increased size. D. carinata achieves this by reducing the fraction of available resources allocated to reproduction. The cost is lower reproductive output.",
keywords = "Crest induction, Daphnia, Energetic costs",
author = "Barry, {Michael J.}",
year = "1994",
month = "3",
doi = "10.1007/BF00323161",
language = "English",
volume = "97",
pages = "278--288",
journal = "Oecologia",
issn = "0029-8519",
publisher = "Springer Verlag",
number = "2",

}

TY - JOUR

T1 - The costs of crest induction for Daphnia carinata

AU - Barry, Michael J.

PY - 1994/3

Y1 - 1994/3

N2 - The effects of notonectid-induced crests on growth and reproduction, and resource allocation to crest construction, moult losses and eggs of Daphnia carinata were measured. An attempt was made to elucidate the mechanisms of physiological costs of crest induction for this species. The crested morph of d. carinata reached a significantly larger size than the uncrested form. Reproductive output was similar in early instars, but the crested morph produced more eggs in latter broods. Instar duration was longer for the crested morph and age at first reproduction was delayed. Survival was also lower in this form. Crest construction required significant resources (equivalent to 60 eggs over a life time) but evidence is presented that these resources were obtained primarily by re-allocation of available material rather than collection of extra resources. The crested morph allocated significantly more resources to moulting than its uncrested counter-parts. The uncrested morph produced large eggs in early instars and progressively smaller ones in later instars. The crested morph produced only small eggs. The hypothesis is presented that the crest-induction strategy of D. carinata involves at least two separate sets of responses, each with its own costs and trade-offs. The first response is production of the crest. The cost of crest production is an increased cost of moulting. D. carinata off sets this cost by increasing instar duration and thus age at reproduction. The second response is increased size. D. carinata achieves this by reducing the fraction of available resources allocated to reproduction. The cost is lower reproductive output.

AB - The effects of notonectid-induced crests on growth and reproduction, and resource allocation to crest construction, moult losses and eggs of Daphnia carinata were measured. An attempt was made to elucidate the mechanisms of physiological costs of crest induction for this species. The crested morph of d. carinata reached a significantly larger size than the uncrested form. Reproductive output was similar in early instars, but the crested morph produced more eggs in latter broods. Instar duration was longer for the crested morph and age at first reproduction was delayed. Survival was also lower in this form. Crest construction required significant resources (equivalent to 60 eggs over a life time) but evidence is presented that these resources were obtained primarily by re-allocation of available material rather than collection of extra resources. The crested morph allocated significantly more resources to moulting than its uncrested counter-parts. The uncrested morph produced large eggs in early instars and progressively smaller ones in later instars. The crested morph produced only small eggs. The hypothesis is presented that the crest-induction strategy of D. carinata involves at least two separate sets of responses, each with its own costs and trade-offs. The first response is production of the crest. The cost of crest production is an increased cost of moulting. D. carinata off sets this cost by increasing instar duration and thus age at reproduction. The second response is increased size. D. carinata achieves this by reducing the fraction of available resources allocated to reproduction. The cost is lower reproductive output.

KW - Crest induction

KW - Daphnia

KW - Energetic costs

UR - http://www.scopus.com/inward/record.url?scp=0028159862&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028159862&partnerID=8YFLogxK

U2 - 10.1007/BF00323161

DO - 10.1007/BF00323161

M3 - Article

AN - SCOPUS:0028159862

VL - 97

SP - 278

EP - 288

JO - Oecologia

JF - Oecologia

SN - 0029-8519

IS - 2

ER -