The contraction of S2p-1 to Hp-1

A. H. Dooley, S. K. Gupta

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

A contraction of the sphere S2p 1, considered as the homogeneous space U(p)/U(p - 1), to the Heisenherg group Hp-1 is defined. The infinite dimensional irreducible unitary representations of Heisenberg group Hp-1 are then shown to be the limits of the irreducible representations of U(p) which are class-1 with respect to U(p - 1). Our results generalise the earlier results of Fulvio Ricci.

Original languageEnglish
Pages (from-to)237-253
Number of pages17
JournalMonatshefte fur Mathematik
Volume128
Issue number3
Publication statusPublished - 1999

Fingerprint

Contraction
Unitary Representation
Heisenberg Group
Homogeneous Space
Irreducible Representation
Generalise
Class

Keywords

  • Contraction
  • Heisenberg group
  • Matrix coefficients
  • Sphere
  • Unitary groups

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

The contraction of S2p-1 to Hp-1 . / Dooley, A. H.; Gupta, S. K.

In: Monatshefte fur Mathematik, Vol. 128, No. 3, 1999, p. 237-253.

Research output: Contribution to journalArticle

Dooley, AH & Gupta, SK 1999, 'The contraction of S2p-1 to Hp-1 ', Monatshefte fur Mathematik, vol. 128, no. 3, pp. 237-253.
Dooley, A. H. ; Gupta, S. K. / The contraction of S2p-1 to Hp-1 . In: Monatshefte fur Mathematik. 1999 ; Vol. 128, No. 3. pp. 237-253.
@article{f2f21af70b31493c9dad3389b042aca5,
title = "The contraction of S2p-1 to Hp-1",
abstract = "A contraction of the sphere S2p 1, considered as the homogeneous space U(p)/U(p - 1), to the Heisenherg group Hp-1 is defined. The infinite dimensional irreducible unitary representations of Heisenberg group Hp-1 are then shown to be the limits of the irreducible representations of U(p) which are class-1 with respect to U(p - 1). Our results generalise the earlier results of Fulvio Ricci.",
keywords = "Contraction, Heisenberg group, Matrix coefficients, Sphere, Unitary groups",
author = "Dooley, {A. H.} and Gupta, {S. K.}",
year = "1999",
language = "English",
volume = "128",
pages = "237--253",
journal = "Monatshefte fur Mathematik",
issn = "0026-9255",
publisher = "Springer Wien",
number = "3",

}

TY - JOUR

T1 - The contraction of S2p-1 to Hp-1

AU - Dooley, A. H.

AU - Gupta, S. K.

PY - 1999

Y1 - 1999

N2 - A contraction of the sphere S2p 1, considered as the homogeneous space U(p)/U(p - 1), to the Heisenherg group Hp-1 is defined. The infinite dimensional irreducible unitary representations of Heisenberg group Hp-1 are then shown to be the limits of the irreducible representations of U(p) which are class-1 with respect to U(p - 1). Our results generalise the earlier results of Fulvio Ricci.

AB - A contraction of the sphere S2p 1, considered as the homogeneous space U(p)/U(p - 1), to the Heisenherg group Hp-1 is defined. The infinite dimensional irreducible unitary representations of Heisenberg group Hp-1 are then shown to be the limits of the irreducible representations of U(p) which are class-1 with respect to U(p - 1). Our results generalise the earlier results of Fulvio Ricci.

KW - Contraction

KW - Heisenberg group

KW - Matrix coefficients

KW - Sphere

KW - Unitary groups

UR - http://www.scopus.com/inward/record.url?scp=0012897430&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0012897430&partnerID=8YFLogxK

M3 - Article

VL - 128

SP - 237

EP - 253

JO - Monatshefte fur Mathematik

JF - Monatshefte fur Mathematik

SN - 0026-9255

IS - 3

ER -