Synthesized graphene oxide and fumed aerosil 380 dispersion stability and characterization with partially hydrolyzed polyacrylamide

Najeebullah Lashari*, Tarek Ganat

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Hydrolyzed polyacrylamide (HPAM) is a commonly used polymer for the chemicals, mining and refining processes of hydrocarbon but suffers from a persistent high-temperature instability problem. In contrast, the nanoparticle suspension remains a technical challenge because of the strong interactions of van der Waal forces within nanoparticles, which always encourage aggregation. This research sought to improve nanoparticles (NP) stability and polymer (HPAM) rheological properties to improved hydrocarbon recovery by utilizing synthesized graphene oxide (GO) nanosheets and fumed Aerosil 380 Silica oxide (SiO2). The aqueous nanocomposites based on HPAM-GO and HPAM-SiO2 in aqueous polymeric solutions have been developed, and its viscoelastic and static behaviour is studied. The results imply that by adding fumed silica NP, the viscoelastic behaviour of HPAM is marginally improved, particularly in high temperatures and salinity, however, the inclusion of GO's significantly improves the viscosity and stability of the base polymer fluid at high temperatures. The Fourier data for the transformation of the infrared spectrum confirmed that the hydrogen bonding formed between HPAM carbonyl groups and silica NP surface silanol functionality and covalent interlinking of electrostatic h-bonding between HPAM and functional GO contributed to the improved stabilization and improved rheological performance that helps to recover high salinity and temperature hydrocarbons.

Original languageEnglish
Pages (from-to)307-322
Number of pages16
JournalChinese Journal of Chemical Engineering
Volume34
DOIs
Publication statusPublished - Jun 2021
Externally publishedYes

Keywords

  • Aggregation
  • Chemical enhance oil recovery
  • Composites
  • Hydrocarbons
  • Nanoparticles
  • Polymer

ASJC Scopus subject areas

  • Environmental Engineering
  • Biochemistry
  • Chemistry(all)
  • Chemical Engineering(all)

Cite this