Subidempotent radical classes

Stefan Veldsman

Research output: Contribution to journalArticle

Abstract

We show that a semisimple class of rings M satisfies condition (β) (i.e. I ◃ A ◃ M and A2= 0 implies A/I ε M) if and only if the corresponding radical class is hypersolvable or hypo-idempotent. Any radical class R which satisfies condition (F) (i.e. J ◃ I ◃ A and I/J ε R implies J ◃ A) must by hypo-idempotent. If the radical class is regular, the converse is also true. We also give characterizations of the semisimple classes of hypo-idempotent and subidempotent radical classes.

Original languageEnglish
Pages (from-to)361-370
Number of pages10
JournalQuaestiones Mathematicae
Volume11
Issue number4
DOIs
Publication statusPublished - 1988

Fingerprint

Idempotent
Semisimple
Imply
Converse
Class
If and only if
Ring

ASJC Scopus subject areas

  • Mathematics (miscellaneous)

Cite this

Subidempotent radical classes. / Veldsman, Stefan.

In: Quaestiones Mathematicae, Vol. 11, No. 4, 1988, p. 361-370.

Research output: Contribution to journalArticle

Veldsman, Stefan. / Subidempotent radical classes. In: Quaestiones Mathematicae. 1988 ; Vol. 11, No. 4. pp. 361-370.
@article{350db92ed5464f61822e50e069f2a71e,
title = "Subidempotent radical classes",
abstract = "We show that a semisimple class of rings M satisfies condition (β) (i.e. I ◃ A ◃ M and A2= 0 implies A/I ε M) if and only if the corresponding radical class is hypersolvable or hypo-idempotent. Any radical class R which satisfies condition (F) (i.e. J ◃ I ◃ A and I/J ε R implies J ◃ A) must by hypo-idempotent. If the radical class is regular, the converse is also true. We also give characterizations of the semisimple classes of hypo-idempotent and subidempotent radical classes.",
author = "Stefan Veldsman",
year = "1988",
doi = "10.1080/16073606.1988.9632151",
language = "English",
volume = "11",
pages = "361--370",
journal = "Quaestiones Mathematicae",
issn = "1607-3606",
publisher = "Taylor and Francis Ltd.",
number = "4",

}

TY - JOUR

T1 - Subidempotent radical classes

AU - Veldsman, Stefan

PY - 1988

Y1 - 1988

N2 - We show that a semisimple class of rings M satisfies condition (β) (i.e. I ◃ A ◃ M and A2= 0 implies A/I ε M) if and only if the corresponding radical class is hypersolvable or hypo-idempotent. Any radical class R which satisfies condition (F) (i.e. J ◃ I ◃ A and I/J ε R implies J ◃ A) must by hypo-idempotent. If the radical class is regular, the converse is also true. We also give characterizations of the semisimple classes of hypo-idempotent and subidempotent radical classes.

AB - We show that a semisimple class of rings M satisfies condition (β) (i.e. I ◃ A ◃ M and A2= 0 implies A/I ε M) if and only if the corresponding radical class is hypersolvable or hypo-idempotent. Any radical class R which satisfies condition (F) (i.e. J ◃ I ◃ A and I/J ε R implies J ◃ A) must by hypo-idempotent. If the radical class is regular, the converse is also true. We also give characterizations of the semisimple classes of hypo-idempotent and subidempotent radical classes.

UR - http://www.scopus.com/inward/record.url?scp=84952211253&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84952211253&partnerID=8YFLogxK

U2 - 10.1080/16073606.1988.9632151

DO - 10.1080/16073606.1988.9632151

M3 - Article

VL - 11

SP - 361

EP - 370

JO - Quaestiones Mathematicae

JF - Quaestiones Mathematicae

SN - 1607-3606

IS - 4

ER -