Studies of optimal memory for discrete-time fir filters in state-space

Felipe Ramirez-Echeverria, Amadou Sarr, Oscar G. Ibarra-Manzano, Yuriy S. Shmaliy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

We address two efficient estimators of optimal memory for FIR filters in discrete-time state-space via the conditional mean square error and real measurement. In the latter case, the algorithm does not involve neither a reference nor the noise covariances, but requires a learning circle. Although a justification has been provided for the Kalman-like unbiased FIR filter, the estimators can be used universally. Testing by the two-state polynomial model has shown a very good correspondence with the predicted values.

Original languageEnglish
Title of host publication2012 IEEE Statistical Signal Processing Workshop, SSP 2012
Pages349-352
Number of pages4
DOIs
Publication statusPublished - 2012
Event2012 IEEE Statistical Signal Processing Workshop, SSP 2012 - Ann Arbor, MI, United States
Duration: Aug 5 2012Aug 8 2012

Other

Other2012 IEEE Statistical Signal Processing Workshop, SSP 2012
CountryUnited States
CityAnn Arbor, MI
Period8/5/128/8/12

Fingerprint

FIR filters
Data storage equipment
Mean square error
Testing
Statistical Models

Keywords

  • FIR filtering
  • optimal memory
  • unbiased Kalman-like filter

ASJC Scopus subject areas

  • Signal Processing

Cite this

Ramirez-Echeverria, F., Sarr, A., Ibarra-Manzano, O. G., & Shmaliy, Y. S. (2012). Studies of optimal memory for discrete-time fir filters in state-space. In 2012 IEEE Statistical Signal Processing Workshop, SSP 2012 (pp. 349-352). [6319701] https://doi.org/10.1109/SSP.2012.6319701

Studies of optimal memory for discrete-time fir filters in state-space. / Ramirez-Echeverria, Felipe; Sarr, Amadou; Ibarra-Manzano, Oscar G.; Shmaliy, Yuriy S.

2012 IEEE Statistical Signal Processing Workshop, SSP 2012. 2012. p. 349-352 6319701.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Ramirez-Echeverria, F, Sarr, A, Ibarra-Manzano, OG & Shmaliy, YS 2012, Studies of optimal memory for discrete-time fir filters in state-space. in 2012 IEEE Statistical Signal Processing Workshop, SSP 2012., 6319701, pp. 349-352, 2012 IEEE Statistical Signal Processing Workshop, SSP 2012, Ann Arbor, MI, United States, 8/5/12. https://doi.org/10.1109/SSP.2012.6319701
Ramirez-Echeverria F, Sarr A, Ibarra-Manzano OG, Shmaliy YS. Studies of optimal memory for discrete-time fir filters in state-space. In 2012 IEEE Statistical Signal Processing Workshop, SSP 2012. 2012. p. 349-352. 6319701 https://doi.org/10.1109/SSP.2012.6319701
Ramirez-Echeverria, Felipe ; Sarr, Amadou ; Ibarra-Manzano, Oscar G. ; Shmaliy, Yuriy S. / Studies of optimal memory for discrete-time fir filters in state-space. 2012 IEEE Statistical Signal Processing Workshop, SSP 2012. 2012. pp. 349-352
@inproceedings{59de71f17a76479c96e9745acbc006ae,
title = "Studies of optimal memory for discrete-time fir filters in state-space",
abstract = "We address two efficient estimators of optimal memory for FIR filters in discrete-time state-space via the conditional mean square error and real measurement. In the latter case, the algorithm does not involve neither a reference nor the noise covariances, but requires a learning circle. Although a justification has been provided for the Kalman-like unbiased FIR filter, the estimators can be used universally. Testing by the two-state polynomial model has shown a very good correspondence with the predicted values.",
keywords = "FIR filtering, optimal memory, unbiased Kalman-like filter",
author = "Felipe Ramirez-Echeverria and Amadou Sarr and Ibarra-Manzano, {Oscar G.} and Shmaliy, {Yuriy S.}",
year = "2012",
doi = "10.1109/SSP.2012.6319701",
language = "English",
isbn = "9781467301831",
pages = "349--352",
booktitle = "2012 IEEE Statistical Signal Processing Workshop, SSP 2012",

}

TY - GEN

T1 - Studies of optimal memory for discrete-time fir filters in state-space

AU - Ramirez-Echeverria, Felipe

AU - Sarr, Amadou

AU - Ibarra-Manzano, Oscar G.

AU - Shmaliy, Yuriy S.

PY - 2012

Y1 - 2012

N2 - We address two efficient estimators of optimal memory for FIR filters in discrete-time state-space via the conditional mean square error and real measurement. In the latter case, the algorithm does not involve neither a reference nor the noise covariances, but requires a learning circle. Although a justification has been provided for the Kalman-like unbiased FIR filter, the estimators can be used universally. Testing by the two-state polynomial model has shown a very good correspondence with the predicted values.

AB - We address two efficient estimators of optimal memory for FIR filters in discrete-time state-space via the conditional mean square error and real measurement. In the latter case, the algorithm does not involve neither a reference nor the noise covariances, but requires a learning circle. Although a justification has been provided for the Kalman-like unbiased FIR filter, the estimators can be used universally. Testing by the two-state polynomial model has shown a very good correspondence with the predicted values.

KW - FIR filtering

KW - optimal memory

KW - unbiased Kalman-like filter

UR - http://www.scopus.com/inward/record.url?scp=84868236642&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84868236642&partnerID=8YFLogxK

U2 - 10.1109/SSP.2012.6319701

DO - 10.1109/SSP.2012.6319701

M3 - Conference contribution

AN - SCOPUS:84868236642

SN - 9781467301831

SP - 349

EP - 352

BT - 2012 IEEE Statistical Signal Processing Workshop, SSP 2012

ER -