Structural behavior of microbeams actuated by out-of-plane electrostatic fringing-fields

Hassen M. Ouakad*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Citations (Scopus)

Abstract

In this paper, we present an investigation of the static behavior of a doubly-clamped microbeam actuated electrically through out-of-plane electrostatic fringing-fields. The distributed electrostatic force is caused by the asymmetry of the fringing-fields. This is actually due to the out-of-plane asymmetry of the beam and its two actuating stationary electrodes. The electric force was approximated by means of fitting the results of two-dimensional numerical solution of the electrostatic problem using Finite-Element Method (FEM). Then, a reduced-order model (ROM) was built using the Galerkin decomposition with linear undamped modes of a clamped-clamped beam as base functions. The ROM equations are solved numerically to get the static response of the considered micro-actuator when actuated by a DC load. Results shows possibility of having three different regimes for this particular MEMS device: a bending regime, a catenary regime, and an elastic regime. Eigenvalue problem is then solved to get the variation of the fundamental natural frequency when the system is deflected by a DC load. Results show that controlling the microbeam stroke, with a DC voltage on the gate electrodes, enables us to tune the system frequency, resulting in a possibility of a tunable MEMS device without a pull-in scenario.

Original languageEnglish
Title of host publicationMicro- and Nano-Systems Engineering and Packaging
PublisherAmerican Society of Mechanical Engineers(ASME)
ISBN (Print)9780791856390
DOIs
Publication statusPublished - 2013
Externally publishedYes
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: Nov 15 2013Nov 21 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume10

Other

OtherASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Country/TerritoryUnited States
CitySan Diego, CA
Period11/15/1311/21/13

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Structural behavior of microbeams actuated by out-of-plane electrostatic fringing-fields'. Together they form a unique fingerprint.

Cite this