Stability study of virus replication model

Q. J.A. Khan*, E. Balakrishnan, Nayif Khamis Al Sinani

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

An HIV infection model with time delay in which uninfected cells become infected cells is analysed. We studied conditions under which steady states will be asymptotically stable. We also examined that for endemically infected equilibrium a critical value of time delay may occur. The steady state will be asymptotically stable when delay is less than a critical value. Else the uninfected cells, infected cells, free virus, and CTLs may undergo cyclic oscillations. We estimate the delay length to maintain stability. Numerical simulations are done to aid mathematical findings.

Original languageEnglish
Pages (from-to)196-209
Number of pages14
JournalJournal of Mathematics and Computer Science
Volume26
Issue number3
DOIs
Publication statusPublished - 2021
Externally publishedYes

Keywords

  • Bifurcation
  • Stability
  • Time-delay
  • Virus

ASJC Scopus subject areas

  • Computational Mechanics
  • Mathematics(all)
  • Computer Science Applications
  • Computational Mathematics

Cite this