Solving the asymmetric traveling salesman problem with periodic constraints

Giuseppe Paletta*, Chefi Triki

*Corresponding author for this work

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

In this article we describe a heuristic algorithm to solve the asymmetrical traveling salesman problem with periodic constraints over a given m-day planning horizon. Each city i must be visited ri times within this time horizon, and these visit days are assigned to / by selecting one of the feasible combinations of ri visit days with the objective of minimizing the total distance traveled by the salesman. The proposed algorithm is a heuristic that starts by designing feasible tours, one for each day of the m-day planning horizon, and then employs an improvement procedure that modifies the assigned combination to each of the cities, to improve the objective function. Our heuristic has been tested on a set of test problems purposely generated by slightly modifying known test problems taken from the literature. Computational comparisons on special instances indicate encouraging results.

Original languageEnglish
Pages (from-to)31-37
Number of pages7
JournalNetworks
Volume44
Issue number1
DOIs
Publication statusPublished - Aug 2004

Keywords

  • Asymmetric traveling salesman problem
  • Construction algorithm
  • Improvement procedure
  • Periodic constraints

ASJC Scopus subject areas

  • Hardware and Architecture

Fingerprint Dive into the research topics of 'Solving the asymmetric traveling salesman problem with periodic constraints'. Together they form a unique fingerprint.

  • Cite this