Serre's Reduction of Linear Functional Systems

M. S. Boudellioua, A. Quadrat

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Serre's reduction aims at reducing the number of unknowns and equations of a linear functional system. Finding an equivalent presentation of a linear functional system containing fewer equations and fewer unknowns can generally simplify both the study of the structural properties of the linear functional system and of different numerical analysis issues, and it can sometimes help solving the linear functional system. The purpose of this paper is to present a constructive approach to Serre's reduction for determined and underdetermined linear functional systems.

Original languageEnglish
Pages (from-to)289-312
Number of pages24
JournalMathematics in Computer Science
Volume4
Issue number2-3
DOIs
Publication statusPublished - Sep 2010

    Fingerprint

Keywords

  • Homological algebra
  • Linear functional systems
  • Mathematical systems theory
  • Module theory
  • Serre's reduction
  • Symbolic computation

ASJC Scopus subject areas

  • Applied Mathematics
  • Computational Mathematics
  • Computational Theory and Mathematics

Cite this