TY - JOUR
T1 - Semiquantitation of mouse dendritic cell migration in vivo using cellular MRI
AU - Dekaban, Gregory A.
AU - Snir, Jonatan
AU - Shrum, Bradly
AU - De Chickera, Sonali
AU - Willert, Christy
AU - Merrill, Mia
AU - Said, Elias A.
AU - Sekaly, Rafick Pierre
AU - Foster, Paula J.
AU - O'Connell, Peta J.
PY - 2009/4
Y1 - 2009/4
N2 - Despite recent therapeutic advances, including the introduction of novel cytostatic drugs and therapeutic antibodies, many cancer patients will experience recurrent or metastatic disease. Current treatment options, particularly for those patients with metastatic breast, prostate, or skin cancers, are complex and have limited curative potential. Recent clinical trials, however, have shown that cell-based therapeutic vaccines may be used to generate broad-based, antitumor immune responses. Dendritic cells (DC) have proved to be the most efficacious cellular component for therapeutic vaccines, serving as both the adjuvant and antigen delivery vehicle. At present it is not possible to noninvasively determine the fate of DC-based vaccines after their administration to human subjects. In this study, we demonstrate that in vitro-generated mouse DC can be readily labeled with superparamagnetic iron oxide nanoparticles, Feridex, without altering cell morphology, or their phenotypic and functional maturation. Feridex-labeling enables the detection of DC in vivo after their migration to draining lymph nodes using a 1.5áT clinical magnetic resonance scanner. In addition, we report a semiquantitative approach for analysis of magnetic resonance images and show that the Feridex-induced signal void volume, and fractional signal loss, correlates with the delivery and migration of small numbers of in vitro-generated DC. These findings, together with ongoing preclinical studies, are key to gaining information critical for improving the efficacy of therapeutic vaccines for the treatment cancer, and potentially, chronic infectious diseases.
AB - Despite recent therapeutic advances, including the introduction of novel cytostatic drugs and therapeutic antibodies, many cancer patients will experience recurrent or metastatic disease. Current treatment options, particularly for those patients with metastatic breast, prostate, or skin cancers, are complex and have limited curative potential. Recent clinical trials, however, have shown that cell-based therapeutic vaccines may be used to generate broad-based, antitumor immune responses. Dendritic cells (DC) have proved to be the most efficacious cellular component for therapeutic vaccines, serving as both the adjuvant and antigen delivery vehicle. At present it is not possible to noninvasively determine the fate of DC-based vaccines after their administration to human subjects. In this study, we demonstrate that in vitro-generated mouse DC can be readily labeled with superparamagnetic iron oxide nanoparticles, Feridex, without altering cell morphology, or their phenotypic and functional maturation. Feridex-labeling enables the detection of DC in vivo after their migration to draining lymph nodes using a 1.5áT clinical magnetic resonance scanner. In addition, we report a semiquantitative approach for analysis of magnetic resonance images and show that the Feridex-induced signal void volume, and fractional signal loss, correlates with the delivery and migration of small numbers of in vitro-generated DC. These findings, together with ongoing preclinical studies, are key to gaining information critical for improving the efficacy of therapeutic vaccines for the treatment cancer, and potentially, chronic infectious diseases.
KW - Cancer
KW - Dendritic cells
KW - Immunotherapy
KW - Magnetic resonance imaging
KW - Vaccine
UR - http://www.scopus.com/inward/record.url?scp=67449096024&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67449096024&partnerID=8YFLogxK
U2 - 10.1097/CJI.0b013e318197b2a0
DO - 10.1097/CJI.0b013e318197b2a0
M3 - Article
C2 - 19242376
AN - SCOPUS:67449096024
SN - 1524-9557
VL - 32
SP - 240
EP - 251
JO - Journal of Immunotherapy
JF - Journal of Immunotherapy
IS - 3
ER -