Role of Oxidative Stress and Antioxidants in Autism

Thamilarasan Manivasagam, Selvaraj Arunadevi, Mustafa Mohamed Essa, Chidambaram SaravanaBabu, Anupom Borah, Arokiasamy Justin Thenmozhi*, M. Walid Qoronfleh

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapter

57 Citations (Scopus)

Abstract

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders with poorly understood etiology that are defined exclusively on the basis of behavioral observations. This disorder has been linked to increased levels of oxidative stress and lower antioxidant capacity. Oxidative stress in autism has been studied at the membrane level and also by measuring products of lipid peroxidation, detoxifying agents (such as glutathione), and antioxidants involved in the defense system against reactive oxygen species (ROS). Several studies have suggested alterations in the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase in autism. Additionally, altered glutathione levels and homocysteine/methionine metabolism, increased inflammation, excitotoxicity, as well as mitochondrial and immune dysfunction have been suggested in autism. Moreover, environmental and genetic risk factors may intensify vulnerability to oxidative stress in autism. Collectively, these studies suggest increased oxidative stress in autism that may contribute to the development of this disease both in terms of pathogenesis and clinical symptoms. Antioxidant supplementation, or ways to improve the altered metabolite levels in the interconnected transmethylation and transsulfuration pathways, has been associated with decreased autistic behaviors and severity. This chapter provides a conceptual framework on oxidative stress and antioxidants utility. These types of interventions should be further studied in order to determine their effectiveness at improving metabolic imbalances.

Original languageEnglish
Title of host publicationAdvances in Neurobiology
PublisherSpringer
Pages193-206
Number of pages14
DOIs
Publication statusPublished - 2020

Publication series

NameAdvances in Neurobiology
Volume24
ISSN (Print)2190-5215
ISSN (Electronic)2190-5223

Keywords

  • ASD
  • Antioxidants
  • Autism
  • Free radicals
  • Oxidative stress
  • Reactive oxygen species

ASJC Scopus subject areas

  • Biochemistry
  • Neurology
  • Developmental Neuroscience
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Role of Oxidative Stress and Antioxidants in Autism'. Together they form a unique fingerprint.

Cite this