RFLP-based analysis of recombination among resistance genes to fusarium wilt races 1, 2, and 3 in tomato

J. W. Scott, H. A. Agrama, J. P. Jones

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

Tomato (Lycopersicon esculentum) line E427 has resistance genes to all three races of Fusarium oxysporum f.sp. lycopersici derived from L. pennellii accession LA 716 and L. pimpinellifolium accession PI 126915. To determine genes that confer resistance to specific races of fusarium wilt, line E427 was crossed to susceptible 'Bonny Best' and then F2 and backcross (to 'Bonny Best') seed were obtained. Self-pollinations resulted in 337 lines and progeny of each line was inoculated separately with fusarium wilt races 1, 2, or 3. Plants from lines whose segregation suggested recombination of resistance were self-pollinated and reinoculated until disease reactions were homozygous. Four lines were obtained with resistance to both races 2 and 3, but susceptible to race 1. These lines had the L. pennellii alleles at restriction fragment length polymorphism (RFLP) markers linked to I-3 on chromosome 7 and lacked L. pimpinellifolium alleles linked to I and I-2 on chromosome 11. Complementation (F2) data indicated race 2 resistance on chromosome 7 was controlled by a single dominant gene. Three lines were resistant to race 2, but susceptible to races 1 and 3. These lines had L. pimpinellifolium alleles at TG105 and flanking markers encompassing a 14.4 cM region indicating the presence of I-2, and no L. pennellii alleles at markers linked to I-3. Three lines were resistant to race 1, but susceptible to races 2 and 3. All three lines had L. pimpinellifolium alleles at TG523 confirming linkage to I on chromosome 11 and no L. pennellii alleles at markers tightly linked to I-3. However, one of the lines, 415, had L. pennellii alleles at CT113 on chromosome 7. This data along with F2 complementation data suggests the possible existence of a second race 1 resistant locus, 11, in this region. The four lines resistant to both races 2 and 3 were backcrossed again to 'Bonny Best' and self-pollinated progeny from 174 plants were screened as described above. Two lines derived from different BC1S1 lines that were fusarium wilt race 3 resistant and susceptible to race 1 had intermediate resistance to race 2. These two lines did not have the L. pennellii alleles at TG183, TG174, and CT43 near the I-3 locus indicating crossovers in this region resulted in reduced race 2 resistance. Collectively, this is the first clear break in the fusarium wilt race 2 and race 1 resistance linkage on chromosome 11. It appears that the race 1 resistance derived from PI 126915 is controlled by the I gene. On chromosome 7, there was a break between the I-3 and I1 genes indicating I-3 does not confer race 1 resistance. The crossovers resulting in reduced resistance to race 2 could be within a complex I-3 locus or a tightly linked race 2 locus.

Original languageEnglish
Pages (from-to)394-400
Number of pages7
JournalJournal of the American Society for Horticultural Science
Volume129
Issue number3
Publication statusPublished - May 2004

Fingerprint

Fusarium wilt
Fusarium
Lycopersicon esculentum
Restriction Fragment Length Polymorphisms
Genetic Recombination
restriction fragment length polymorphism
tomatoes
Genes
genes
Alleles
alleles
Chromosomes, Human, Pair 7
chromosomes
Chromosomes, Human, Pair 11
loci
linkage (genetics)
Solanum pennellii var. pennellii
Fusarium oxysporum f. sp. lycopersici
Dominant Genes

Keywords

  • Disease resistance
  • Fusarium oxysporum f. sp. lycopersici
  • Linkage
  • Lycopersicon esculentum

ASJC Scopus subject areas

  • Genetics
  • Horticulture

Cite this

RFLP-based analysis of recombination among resistance genes to fusarium wilt races 1, 2, and 3 in tomato. / Scott, J. W.; Agrama, H. A.; Jones, J. P.

In: Journal of the American Society for Horticultural Science, Vol. 129, No. 3, 05.2004, p. 394-400.

Research output: Contribution to journalArticle

@article{0c9b050b85774355b1303487aa96ce13,
title = "RFLP-based analysis of recombination among resistance genes to fusarium wilt races 1, 2, and 3 in tomato",
abstract = "Tomato (Lycopersicon esculentum) line E427 has resistance genes to all three races of Fusarium oxysporum f.sp. lycopersici derived from L. pennellii accession LA 716 and L. pimpinellifolium accession PI 126915. To determine genes that confer resistance to specific races of fusarium wilt, line E427 was crossed to susceptible 'Bonny Best' and then F2 and backcross (to 'Bonny Best') seed were obtained. Self-pollinations resulted in 337 lines and progeny of each line was inoculated separately with fusarium wilt races 1, 2, or 3. Plants from lines whose segregation suggested recombination of resistance were self-pollinated and reinoculated until disease reactions were homozygous. Four lines were obtained with resistance to both races 2 and 3, but susceptible to race 1. These lines had the L. pennellii alleles at restriction fragment length polymorphism (RFLP) markers linked to I-3 on chromosome 7 and lacked L. pimpinellifolium alleles linked to I and I-2 on chromosome 11. Complementation (F2) data indicated race 2 resistance on chromosome 7 was controlled by a single dominant gene. Three lines were resistant to race 2, but susceptible to races 1 and 3. These lines had L. pimpinellifolium alleles at TG105 and flanking markers encompassing a 14.4 cM region indicating the presence of I-2, and no L. pennellii alleles at markers linked to I-3. Three lines were resistant to race 1, but susceptible to races 2 and 3. All three lines had L. pimpinellifolium alleles at TG523 confirming linkage to I on chromosome 11 and no L. pennellii alleles at markers tightly linked to I-3. However, one of the lines, 415, had L. pennellii alleles at CT113 on chromosome 7. This data along with F2 complementation data suggests the possible existence of a second race 1 resistant locus, 11, in this region. The four lines resistant to both races 2 and 3 were backcrossed again to 'Bonny Best' and self-pollinated progeny from 174 plants were screened as described above. Two lines derived from different BC1S1 lines that were fusarium wilt race 3 resistant and susceptible to race 1 had intermediate resistance to race 2. These two lines did not have the L. pennellii alleles at TG183, TG174, and CT43 near the I-3 locus indicating crossovers in this region resulted in reduced race 2 resistance. Collectively, this is the first clear break in the fusarium wilt race 2 and race 1 resistance linkage on chromosome 11. It appears that the race 1 resistance derived from PI 126915 is controlled by the I gene. On chromosome 7, there was a break between the I-3 and I1 genes indicating I-3 does not confer race 1 resistance. The crossovers resulting in reduced resistance to race 2 could be within a complex I-3 locus or a tightly linked race 2 locus.",
keywords = "Disease resistance, Fusarium oxysporum f. sp. lycopersici, Linkage, Lycopersicon esculentum",
author = "Scott, {J. W.} and Agrama, {H. A.} and Jones, {J. P.}",
year = "2004",
month = "5",
language = "English",
volume = "129",
pages = "394--400",
journal = "Journal of the American Society for Horticultural Science",
issn = "0003-1062",
publisher = "American Society for Horticultural Science",
number = "3",

}

TY - JOUR

T1 - RFLP-based analysis of recombination among resistance genes to fusarium wilt races 1, 2, and 3 in tomato

AU - Scott, J. W.

AU - Agrama, H. A.

AU - Jones, J. P.

PY - 2004/5

Y1 - 2004/5

N2 - Tomato (Lycopersicon esculentum) line E427 has resistance genes to all three races of Fusarium oxysporum f.sp. lycopersici derived from L. pennellii accession LA 716 and L. pimpinellifolium accession PI 126915. To determine genes that confer resistance to specific races of fusarium wilt, line E427 was crossed to susceptible 'Bonny Best' and then F2 and backcross (to 'Bonny Best') seed were obtained. Self-pollinations resulted in 337 lines and progeny of each line was inoculated separately with fusarium wilt races 1, 2, or 3. Plants from lines whose segregation suggested recombination of resistance were self-pollinated and reinoculated until disease reactions were homozygous. Four lines were obtained with resistance to both races 2 and 3, but susceptible to race 1. These lines had the L. pennellii alleles at restriction fragment length polymorphism (RFLP) markers linked to I-3 on chromosome 7 and lacked L. pimpinellifolium alleles linked to I and I-2 on chromosome 11. Complementation (F2) data indicated race 2 resistance on chromosome 7 was controlled by a single dominant gene. Three lines were resistant to race 2, but susceptible to races 1 and 3. These lines had L. pimpinellifolium alleles at TG105 and flanking markers encompassing a 14.4 cM region indicating the presence of I-2, and no L. pennellii alleles at markers linked to I-3. Three lines were resistant to race 1, but susceptible to races 2 and 3. All three lines had L. pimpinellifolium alleles at TG523 confirming linkage to I on chromosome 11 and no L. pennellii alleles at markers tightly linked to I-3. However, one of the lines, 415, had L. pennellii alleles at CT113 on chromosome 7. This data along with F2 complementation data suggests the possible existence of a second race 1 resistant locus, 11, in this region. The four lines resistant to both races 2 and 3 were backcrossed again to 'Bonny Best' and self-pollinated progeny from 174 plants were screened as described above. Two lines derived from different BC1S1 lines that were fusarium wilt race 3 resistant and susceptible to race 1 had intermediate resistance to race 2. These two lines did not have the L. pennellii alleles at TG183, TG174, and CT43 near the I-3 locus indicating crossovers in this region resulted in reduced race 2 resistance. Collectively, this is the first clear break in the fusarium wilt race 2 and race 1 resistance linkage on chromosome 11. It appears that the race 1 resistance derived from PI 126915 is controlled by the I gene. On chromosome 7, there was a break between the I-3 and I1 genes indicating I-3 does not confer race 1 resistance. The crossovers resulting in reduced resistance to race 2 could be within a complex I-3 locus or a tightly linked race 2 locus.

AB - Tomato (Lycopersicon esculentum) line E427 has resistance genes to all three races of Fusarium oxysporum f.sp. lycopersici derived from L. pennellii accession LA 716 and L. pimpinellifolium accession PI 126915. To determine genes that confer resistance to specific races of fusarium wilt, line E427 was crossed to susceptible 'Bonny Best' and then F2 and backcross (to 'Bonny Best') seed were obtained. Self-pollinations resulted in 337 lines and progeny of each line was inoculated separately with fusarium wilt races 1, 2, or 3. Plants from lines whose segregation suggested recombination of resistance were self-pollinated and reinoculated until disease reactions were homozygous. Four lines were obtained with resistance to both races 2 and 3, but susceptible to race 1. These lines had the L. pennellii alleles at restriction fragment length polymorphism (RFLP) markers linked to I-3 on chromosome 7 and lacked L. pimpinellifolium alleles linked to I and I-2 on chromosome 11. Complementation (F2) data indicated race 2 resistance on chromosome 7 was controlled by a single dominant gene. Three lines were resistant to race 2, but susceptible to races 1 and 3. These lines had L. pimpinellifolium alleles at TG105 and flanking markers encompassing a 14.4 cM region indicating the presence of I-2, and no L. pennellii alleles at markers linked to I-3. Three lines were resistant to race 1, but susceptible to races 2 and 3. All three lines had L. pimpinellifolium alleles at TG523 confirming linkage to I on chromosome 11 and no L. pennellii alleles at markers tightly linked to I-3. However, one of the lines, 415, had L. pennellii alleles at CT113 on chromosome 7. This data along with F2 complementation data suggests the possible existence of a second race 1 resistant locus, 11, in this region. The four lines resistant to both races 2 and 3 were backcrossed again to 'Bonny Best' and self-pollinated progeny from 174 plants were screened as described above. Two lines derived from different BC1S1 lines that were fusarium wilt race 3 resistant and susceptible to race 1 had intermediate resistance to race 2. These two lines did not have the L. pennellii alleles at TG183, TG174, and CT43 near the I-3 locus indicating crossovers in this region resulted in reduced race 2 resistance. Collectively, this is the first clear break in the fusarium wilt race 2 and race 1 resistance linkage on chromosome 11. It appears that the race 1 resistance derived from PI 126915 is controlled by the I gene. On chromosome 7, there was a break between the I-3 and I1 genes indicating I-3 does not confer race 1 resistance. The crossovers resulting in reduced resistance to race 2 could be within a complex I-3 locus or a tightly linked race 2 locus.

KW - Disease resistance

KW - Fusarium oxysporum f. sp. lycopersici

KW - Linkage

KW - Lycopersicon esculentum

UR - http://www.scopus.com/inward/record.url?scp=1942454257&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1942454257&partnerID=8YFLogxK

M3 - Article

VL - 129

SP - 394

EP - 400

JO - Journal of the American Society for Horticultural Science

JF - Journal of the American Society for Horticultural Science

SN - 0003-1062

IS - 3

ER -