Retrofitting an existing office building in the UAE towards achieving low-energy building

Maatouk Khoukhi*, Abeer Fuad Darsaleh, Sara Ali

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Retrofitting an existing building can oftentimes be more cost-effective than building a new facility. Since buildings consume a significant amount of energy, particularly for heating and cooling, and because existing buildings comprise the largest segment of the built environment, it is important to initiate energy conservation retrofits to reduce energy consumption and the cost of heating, cooling, and lighting buildings. However, conserving energy is not the only reason for retrofitting existing buildings. The goal should be to create a high-performance building by applying an integrated, whole-building design process to the project during the planning phase that ensures that all key design objectives are met. This paper presents a real case study of the retrofitting of an existing building to achieve lower energy consumption. Indeed, most of the constructed buildings in the UAE are unsuitable for the region, which is characterized by a very harsh climate that causes massive cooling loads and energy consumption due to an appropriate selection of design parameters at the design level. In this study, a monthly computer simulation of energy consumption of an office building in Sharjah was carried out under UAE weather conditions. Several parameters, including the building orientation, heating, ventilation, and air conditioning (HVAC) system, external shading, window-to-wall ratio, and the U-values of the walls and the roof, were investigated and optimized to achieve lower energy consumption. The simulation shows that the best case is 41.7% more efficient than the real (original) case and 30.6% more than the base case. The most sensitive parameter in the retrofitting alternatives is the roof component, which affects the energy savings by 8.49%, followed by the AC system with 8.34% energy savings if well selected using the base case. Among the selected five components, a new roof structure contributed the most to the decrease in the overall energy consumption (approximately 38%). This is followed by a new HVAC system, which leads to a 37% decrease, followed by a new wall type with insulation, resulting in a 20% decrease.

Original languageEnglish
Article number2573
JournalSustainability (Switzerland)
Volume12
Issue number6
DOIs
Publication statusPublished - Mar 1 2020
Externally publishedYes

Keywords

  • Buildings
  • Low energy
  • Retrofitting
  • Sustainable design

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Management, Monitoring, Policy and Law

Cite this