Recent Advances in Photocatalytic Detoxification of Water

Priyanka Ganguly*, Suyana Panneri, U. S. Hareesh, Ailish Breen, Suresh C. Pillai

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapter

7 Citations (Scopus)

Abstract

Semiconductor photocatalysis has garnered immense interest in recent years for water treatment processes because of its solar energy alteration and environmental remediation. Several contaminants of emerging concern, such as endocrine disrupting compounds and microbial strains, have been examined in the last decade. Photocatalytic treatment has been found to be an effective method in the degradation of several bacterial strains such as Escherichia coli, Staphylococcus aureus, Streptococcus pneumonia, etc. Similarly, fungal strains such as Aspergillus niger, Fusarium graminearum, algal (. Tetraselmis suecica, Amphidinium carterae, etc.), and viral strains have also been studied utilizing numerous unconventional composite materials including graphene, graphitic-carbon nitride, bismuth-based composites, magnetic composites, etc. Decontamination strategies have been employed to study the degradation pathway of endocrine disrupting compounds like Bisphenol-A and pesticides (atrazine, imidacloprid, etc.). Bioaccumulation of pharmaceutical effluents and the rise in antimicrobial-resistant strains has prompted a discussion of the state of the art of degradation processes utilizing new generation catalysts. The surge in antimicrobial-resistant strains and bioaccumulation of pharmaceutical effluents has encouraged researchers to discover cheap and commercially viable degradation techniques. The present chapter also discusses disinfection and photocatalytic kinetics as well as the mechanism of detoxification.

Original languageEnglish
Title of host publicationNanoscale Materials in Water Purification
PublisherElsevier
Pages653-688
Number of pages36
ISBN (Electronic)9780128139271
ISBN (Print)9780128139264
DOIs
Publication statusPublished - Nov 19 2018
Externally publishedYes

Keywords

  • Decontamination
  • Disinfection
  • Photocatalysis
  • Semiconductor nanomaterials

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Engineering(all)

Cite this