### Abstract

We consider the solution of a generalized E ⊗ ε Jahn-Teller Hamiltonian in the context of quasi-exactly solvable spectral problems. This Hamiltonian is expressed in terms of the generators of the osp(2, 2) Lie algebra. Analytical expressions are obtained for eigenstates and eigenvalues. The solutions lead to a number of earlier results discussed in the literature. However, our approach renders a new understanding of "exact isolated" solutions.

Original language | English |
---|---|

Pages (from-to) | 399-405 |

Number of pages | 7 |

Journal | Progress of Theoretical Physics |

Volume | 110 |

Issue number | 3 |

Publication status | Published - Sep 2003 |

### ASJC Scopus subject areas

- Physics and Astronomy(all)

## Fingerprint Dive into the research topics of 'Quasi-Exact-Solution of the Generalized E ⊗ ε Jahn-Teller Hamiltonian'. Together they form a unique fingerprint.

## Cite this

Koç, R., Tütüncüler, H., Koca, M., & Körcük, E. (2003). Quasi-Exact-Solution of the Generalized E ⊗ ε Jahn-Teller Hamiltonian.

*Progress of Theoretical Physics*,*110*(3), 399-405.