Progress toward understanding the neurophysiological basis of predator-induced morphology in Daphnia pulex

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

Previous studies have demonstrated that certain pesticides, including carbaryl and endosulfan, can modulate the expression of predator-induced morphology in Daphnia. These pesticides affect the transmission of nervous impulses in vertebrates and invertebrates. The aim of this study was to determine the role of two neurotransmitter systems, excitatory cholinergic transmission and inhibitory γ-aminobutyric acid (GABA)-mediated transmission, in the regulation of inducible defenses of Daphnia. The effects of chemicals with four different modes of action on the expression of Chaoborus-induced neckteeth in Daphnia pulex were measured. These chemicals included chemicals that could enhance transmission at cholinergic synapses (physostigmine, nicotine), inhibit cholinergic transmission (atropine), stimulate or enhance the effects of GABA (diazepam, muscimol, cis-4-aminocrotonic acid), or antagonise the action of GABA (picrotoxin, bicuculline, SR95531). The development of Chaoborus-induced neckteeth in D. pulex was enhanced by physostigmine and picrotoxin and suppressed by atropine. It was proposed that these chemicals were acting on neurosecretory cells that release the hormones necessary to induce neckteeth development. The results also indicate mechanisms through which anthropogenic pollutants could influence the expression of inducible defenses, leading to inappropriate expression in environments with low predator intensity or to suppression in environments with high risks of predation.

Original languageEnglish
Pages (from-to)179-186
Number of pages8
JournalPhysiological and Biochemical Zoology
Volume75
Issue number2
DOIs
Publication statusPublished - 2002

Fingerprint

Daphnia
Daphnia pulex
cholinergic agents
gamma-aminobutyric acid
physostigmine
gamma-Aminobutyric Acid
Cholinergic Agents
Chaoborus
Picrotoxin
Physostigmine
atropine
Atropine
predators
Pesticides
pesticides
Endosulfan
Carbaryl
Aminobutyrates
neurosecretory cells
Muscimol

ASJC Scopus subject areas

  • Animal Science and Zoology
  • Physiology
  • Physiology (medical)

Cite this

@article{f3424d46462c429682602d7ed4ffac5d,
title = "Progress toward understanding the neurophysiological basis of predator-induced morphology in Daphnia pulex",
abstract = "Previous studies have demonstrated that certain pesticides, including carbaryl and endosulfan, can modulate the expression of predator-induced morphology in Daphnia. These pesticides affect the transmission of nervous impulses in vertebrates and invertebrates. The aim of this study was to determine the role of two neurotransmitter systems, excitatory cholinergic transmission and inhibitory γ-aminobutyric acid (GABA)-mediated transmission, in the regulation of inducible defenses of Daphnia. The effects of chemicals with four different modes of action on the expression of Chaoborus-induced neckteeth in Daphnia pulex were measured. These chemicals included chemicals that could enhance transmission at cholinergic synapses (physostigmine, nicotine), inhibit cholinergic transmission (atropine), stimulate or enhance the effects of GABA (diazepam, muscimol, cis-4-aminocrotonic acid), or antagonise the action of GABA (picrotoxin, bicuculline, SR95531). The development of Chaoborus-induced neckteeth in D. pulex was enhanced by physostigmine and picrotoxin and suppressed by atropine. It was proposed that these chemicals were acting on neurosecretory cells that release the hormones necessary to induce neckteeth development. The results also indicate mechanisms through which anthropogenic pollutants could influence the expression of inducible defenses, leading to inappropriate expression in environments with low predator intensity or to suppression in environments with high risks of predation.",
author = "Barry, {Michael J.}",
year = "2002",
doi = "10.1086/339389",
language = "English",
volume = "75",
pages = "179--186",
journal = "Physiological and Biochemical Zoology",
issn = "1522-2152",
publisher = "University of Chicago",
number = "2",

}

TY - JOUR

T1 - Progress toward understanding the neurophysiological basis of predator-induced morphology in Daphnia pulex

AU - Barry, Michael J.

PY - 2002

Y1 - 2002

N2 - Previous studies have demonstrated that certain pesticides, including carbaryl and endosulfan, can modulate the expression of predator-induced morphology in Daphnia. These pesticides affect the transmission of nervous impulses in vertebrates and invertebrates. The aim of this study was to determine the role of two neurotransmitter systems, excitatory cholinergic transmission and inhibitory γ-aminobutyric acid (GABA)-mediated transmission, in the regulation of inducible defenses of Daphnia. The effects of chemicals with four different modes of action on the expression of Chaoborus-induced neckteeth in Daphnia pulex were measured. These chemicals included chemicals that could enhance transmission at cholinergic synapses (physostigmine, nicotine), inhibit cholinergic transmission (atropine), stimulate or enhance the effects of GABA (diazepam, muscimol, cis-4-aminocrotonic acid), or antagonise the action of GABA (picrotoxin, bicuculline, SR95531). The development of Chaoborus-induced neckteeth in D. pulex was enhanced by physostigmine and picrotoxin and suppressed by atropine. It was proposed that these chemicals were acting on neurosecretory cells that release the hormones necessary to induce neckteeth development. The results also indicate mechanisms through which anthropogenic pollutants could influence the expression of inducible defenses, leading to inappropriate expression in environments with low predator intensity or to suppression in environments with high risks of predation.

AB - Previous studies have demonstrated that certain pesticides, including carbaryl and endosulfan, can modulate the expression of predator-induced morphology in Daphnia. These pesticides affect the transmission of nervous impulses in vertebrates and invertebrates. The aim of this study was to determine the role of two neurotransmitter systems, excitatory cholinergic transmission and inhibitory γ-aminobutyric acid (GABA)-mediated transmission, in the regulation of inducible defenses of Daphnia. The effects of chemicals with four different modes of action on the expression of Chaoborus-induced neckteeth in Daphnia pulex were measured. These chemicals included chemicals that could enhance transmission at cholinergic synapses (physostigmine, nicotine), inhibit cholinergic transmission (atropine), stimulate or enhance the effects of GABA (diazepam, muscimol, cis-4-aminocrotonic acid), or antagonise the action of GABA (picrotoxin, bicuculline, SR95531). The development of Chaoborus-induced neckteeth in D. pulex was enhanced by physostigmine and picrotoxin and suppressed by atropine. It was proposed that these chemicals were acting on neurosecretory cells that release the hormones necessary to induce neckteeth development. The results also indicate mechanisms through which anthropogenic pollutants could influence the expression of inducible defenses, leading to inappropriate expression in environments with low predator intensity or to suppression in environments with high risks of predation.

UR - http://www.scopus.com/inward/record.url?scp=0035999196&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035999196&partnerID=8YFLogxK

U2 - 10.1086/339389

DO - 10.1086/339389

M3 - Article

C2 - 12024293

AN - SCOPUS:0035999196

VL - 75

SP - 179

EP - 186

JO - Physiological and Biochemical Zoology

JF - Physiological and Biochemical Zoology

SN - 1522-2152

IS - 2

ER -