Polynomial and transformation composition rings

S. Veldsman

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The base of an arbitrary composition ring is defined. This is used, amongst others, to identify polynomial type composition rings and to describe the maximal ideals of certain types of composition rings.

Original languageEnglish
Pages (from-to)489-511
Number of pages23
JournalBeitrage zur Algebra und Geometrie
Volume41
Issue number2
Publication statusPublished - 2000

Fingerprint

Ring
Polynomial
Maximal Ideal
Arbitrary

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Geometry and Topology

Cite this

Polynomial and transformation composition rings. / Veldsman, S.

In: Beitrage zur Algebra und Geometrie, Vol. 41, No. 2, 2000, p. 489-511.

Research output: Contribution to journalArticle

Veldsman, S. / Polynomial and transformation composition rings. In: Beitrage zur Algebra und Geometrie. 2000 ; Vol. 41, No. 2. pp. 489-511.
@article{91b3aa8e4279465794a8ac23b74c2e9a,
title = "Polynomial and transformation composition rings",
abstract = "The base of an arbitrary composition ring is defined. This is used, amongst others, to identify polynomial type composition rings and to describe the maximal ideals of certain types of composition rings.",
author = "S. Veldsman",
year = "2000",
language = "English",
volume = "41",
pages = "489--511",
journal = "Beitrage zur Algebra und Geometrie",
issn = "0138-4821",
publisher = "Springer Berlin",
number = "2",

}

TY - JOUR

T1 - Polynomial and transformation composition rings

AU - Veldsman, S.

PY - 2000

Y1 - 2000

N2 - The base of an arbitrary composition ring is defined. This is used, amongst others, to identify polynomial type composition rings and to describe the maximal ideals of certain types of composition rings.

AB - The base of an arbitrary composition ring is defined. This is used, amongst others, to identify polynomial type composition rings and to describe the maximal ideals of certain types of composition rings.

UR - http://www.scopus.com/inward/record.url?scp=52849124241&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=52849124241&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:52849124241

VL - 41

SP - 489

EP - 511

JO - Beitrage zur Algebra und Geometrie

JF - Beitrage zur Algebra und Geometrie

SN - 0138-4821

IS - 2

ER -