Petrology of Late Jurassic allochthonous ultramafic lamprophyres within the Batain Nappes, Northeastern Oman

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Late Jurassic ultramafic lamprophyre (UML) sills and dikes occur as 3 km-long intrusions within the allochthonous Whara Formation of the Batain nappes, eastern Oman. The sills and dikes comprise macrocrystic phlogopite and spinel-bearing aillikite and damtjernite. Aillikite is a light grey, massive fine-grained tuffaceous rock with euhedral laths of mica, while damtjernite is a dark grey, medium- to coarse-grained rock with abundant pelletal lapilli and globular segregationary textures. Both lithologies are composed of calcite, phlogopite, apatite, magnetite, spinel, diopside, and richterite. Orthoclase occurs only within damtjernite. The rocks are strongly silica undersaturated (17.6–33.7 wt.% SiO2), with low MgO (4.7–10.2 wt. %) and high Al2O3 (3.5–8.6 wt.%). The aillikites are distinguished from the damtjernites by their lower SiO2, Al2O3, and Na2O abundances, and their higher MgO, CaO, and P2O5 contents. The rare earth element (REE) patterns of both rock types are similar and show strong light REE (LREE) enrichment. Both are enriched in Ba, Th, U, Nb, and Ta, with normalized concentrations of up to 1000 times those of primitive mantle. Relative depletions are apparent for high REE (HREE), K, Rb, Pb, Sr, P, Zr, and Hf. The rocks have initial 87Sr/86Sr ratios of 0.70435–0.70646, whereas initial 143Nd/144Nd ratios vary between 0 · 512603 and 0 · 512716 (εNdi 2.6–3.2). Pb isotopic ratios are more varied among the aillikites and damtjernites: 208Pb/204Pbi = 38.97–39.39 and 207Pb/204Pbi = 15.35–15.58, 206Pb/204Pbi = 18.08–18.96. The abundance of phlogopite, apatite, and rutile and enrichment in LREEs, Ba, Th, U, Nb, and Ta in the Sal UMLs suggest metasomatic enrichment of these rocks following a low degree of partial melting of a depleted source region. Ar–Ar age dating of phlogopite macrocrysts from the aillikites and damtjernites (154 and162 Ma, respectively) correlates with large-scale tectonic events recorded in the proto-Indian Ocean at 140–160 Ma.

Original languageEnglish
Pages (from-to)1-16
Number of pages16
JournalInternational Geology Review
DOIs
Publication statusAccepted/In press - Jan 22 2016

Fingerprint

nappe
petrology
Jurassic
phlogopite
rock
rare earth element
sill
spinel
apatite
dike
richterite
lamprophyre
orthoclase
diopside
rutile
isotopic ratio
mica
partial melting
magnetite
lithology

Keywords

  • Aillikite
  • Batain Nappes
  • damtjernite
  • eastern Oman
  • ultramafic lamprophyres

ASJC Scopus subject areas

  • Geology

Cite this

@article{2e3860186b434fa98ed28c8c292dbcc3,
title = "Petrology of Late Jurassic allochthonous ultramafic lamprophyres within the Batain Nappes, Northeastern Oman",
abstract = "Late Jurassic ultramafic lamprophyre (UML) sills and dikes occur as 3 km-long intrusions within the allochthonous Whara Formation of the Batain nappes, eastern Oman. The sills and dikes comprise macrocrystic phlogopite and spinel-bearing aillikite and damtjernite. Aillikite is a light grey, massive fine-grained tuffaceous rock with euhedral laths of mica, while damtjernite is a dark grey, medium- to coarse-grained rock with abundant pelletal lapilli and globular segregationary textures. Both lithologies are composed of calcite, phlogopite, apatite, magnetite, spinel, diopside, and richterite. Orthoclase occurs only within damtjernite. The rocks are strongly silica undersaturated (17.6–33.7 wt.{\%} SiO2), with low MgO (4.7–10.2 wt. {\%}) and high Al2O3 (3.5–8.6 wt.{\%}). The aillikites are distinguished from the damtjernites by their lower SiO2, Al2O3, and Na2O abundances, and their higher MgO, CaO, and P2O5 contents. The rare earth element (REE) patterns of both rock types are similar and show strong light REE (LREE) enrichment. Both are enriched in Ba, Th, U, Nb, and Ta, with normalized concentrations of up to 1000 times those of primitive mantle. Relative depletions are apparent for high REE (HREE), K, Rb, Pb, Sr, P, Zr, and Hf. The rocks have initial 87Sr/86Sr ratios of 0.70435–0.70646, whereas initial 143Nd/144Nd ratios vary between 0 · 512603 and 0 · 512716 (εNdi 2.6–3.2). Pb isotopic ratios are more varied among the aillikites and damtjernites: 208Pb/204Pbi = 38.97–39.39 and 207Pb/204Pbi = 15.35–15.58, 206Pb/204Pbi = 18.08–18.96. The abundance of phlogopite, apatite, and rutile and enrichment in LREEs, Ba, Th, U, Nb, and Ta in the Sal UMLs suggest metasomatic enrichment of these rocks following a low degree of partial melting of a depleted source region. Ar–Ar age dating of phlogopite macrocrysts from the aillikites and damtjernites (154 and162 Ma, respectively) correlates with large-scale tectonic events recorded in the proto-Indian Ocean at 140–160 Ma.",
keywords = "Aillikite, Batain Nappes, damtjernite, eastern Oman, ultramafic lamprophyres",
author = "S. Nasir",
year = "2016",
month = "1",
day = "22",
doi = "10.1080/00206814.2015.1136571",
language = "English",
pages = "1--16",
journal = "International Geology Review",
issn = "0020-6814",
publisher = "Bellwether Publishing, Ltd.",

}

TY - JOUR

T1 - Petrology of Late Jurassic allochthonous ultramafic lamprophyres within the Batain Nappes, Northeastern Oman

AU - Nasir, S.

PY - 2016/1/22

Y1 - 2016/1/22

N2 - Late Jurassic ultramafic lamprophyre (UML) sills and dikes occur as 3 km-long intrusions within the allochthonous Whara Formation of the Batain nappes, eastern Oman. The sills and dikes comprise macrocrystic phlogopite and spinel-bearing aillikite and damtjernite. Aillikite is a light grey, massive fine-grained tuffaceous rock with euhedral laths of mica, while damtjernite is a dark grey, medium- to coarse-grained rock with abundant pelletal lapilli and globular segregationary textures. Both lithologies are composed of calcite, phlogopite, apatite, magnetite, spinel, diopside, and richterite. Orthoclase occurs only within damtjernite. The rocks are strongly silica undersaturated (17.6–33.7 wt.% SiO2), with low MgO (4.7–10.2 wt. %) and high Al2O3 (3.5–8.6 wt.%). The aillikites are distinguished from the damtjernites by their lower SiO2, Al2O3, and Na2O abundances, and their higher MgO, CaO, and P2O5 contents. The rare earth element (REE) patterns of both rock types are similar and show strong light REE (LREE) enrichment. Both are enriched in Ba, Th, U, Nb, and Ta, with normalized concentrations of up to 1000 times those of primitive mantle. Relative depletions are apparent for high REE (HREE), K, Rb, Pb, Sr, P, Zr, and Hf. The rocks have initial 87Sr/86Sr ratios of 0.70435–0.70646, whereas initial 143Nd/144Nd ratios vary between 0 · 512603 and 0 · 512716 (εNdi 2.6–3.2). Pb isotopic ratios are more varied among the aillikites and damtjernites: 208Pb/204Pbi = 38.97–39.39 and 207Pb/204Pbi = 15.35–15.58, 206Pb/204Pbi = 18.08–18.96. The abundance of phlogopite, apatite, and rutile and enrichment in LREEs, Ba, Th, U, Nb, and Ta in the Sal UMLs suggest metasomatic enrichment of these rocks following a low degree of partial melting of a depleted source region. Ar–Ar age dating of phlogopite macrocrysts from the aillikites and damtjernites (154 and162 Ma, respectively) correlates with large-scale tectonic events recorded in the proto-Indian Ocean at 140–160 Ma.

AB - Late Jurassic ultramafic lamprophyre (UML) sills and dikes occur as 3 km-long intrusions within the allochthonous Whara Formation of the Batain nappes, eastern Oman. The sills and dikes comprise macrocrystic phlogopite and spinel-bearing aillikite and damtjernite. Aillikite is a light grey, massive fine-grained tuffaceous rock with euhedral laths of mica, while damtjernite is a dark grey, medium- to coarse-grained rock with abundant pelletal lapilli and globular segregationary textures. Both lithologies are composed of calcite, phlogopite, apatite, magnetite, spinel, diopside, and richterite. Orthoclase occurs only within damtjernite. The rocks are strongly silica undersaturated (17.6–33.7 wt.% SiO2), with low MgO (4.7–10.2 wt. %) and high Al2O3 (3.5–8.6 wt.%). The aillikites are distinguished from the damtjernites by their lower SiO2, Al2O3, and Na2O abundances, and their higher MgO, CaO, and P2O5 contents. The rare earth element (REE) patterns of both rock types are similar and show strong light REE (LREE) enrichment. Both are enriched in Ba, Th, U, Nb, and Ta, with normalized concentrations of up to 1000 times those of primitive mantle. Relative depletions are apparent for high REE (HREE), K, Rb, Pb, Sr, P, Zr, and Hf. The rocks have initial 87Sr/86Sr ratios of 0.70435–0.70646, whereas initial 143Nd/144Nd ratios vary between 0 · 512603 and 0 · 512716 (εNdi 2.6–3.2). Pb isotopic ratios are more varied among the aillikites and damtjernites: 208Pb/204Pbi = 38.97–39.39 and 207Pb/204Pbi = 15.35–15.58, 206Pb/204Pbi = 18.08–18.96. The abundance of phlogopite, apatite, and rutile and enrichment in LREEs, Ba, Th, U, Nb, and Ta in the Sal UMLs suggest metasomatic enrichment of these rocks following a low degree of partial melting of a depleted source region. Ar–Ar age dating of phlogopite macrocrysts from the aillikites and damtjernites (154 and162 Ma, respectively) correlates with large-scale tectonic events recorded in the proto-Indian Ocean at 140–160 Ma.

KW - Aillikite

KW - Batain Nappes

KW - damtjernite

KW - eastern Oman

KW - ultramafic lamprophyres

UR - http://www.scopus.com/inward/record.url?scp=84955099583&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84955099583&partnerID=8YFLogxK

U2 - 10.1080/00206814.2015.1136571

DO - 10.1080/00206814.2015.1136571

M3 - Article

SP - 1

EP - 16

JO - International Geology Review

JF - International Geology Review

SN - 0020-6814

ER -