OVERSTABLE HYDROMAGNETIC CONVECTION IN A ROTATING FLUID LAYER.

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

The effect of the simultaneous action of a uniform magnetic field and a uniform angular velocity on the linear stability of the Benard layer to time-dependent convective motions is examined in the Boussinesq approximation. Four models, characterized by the relative directions of the magnetic field, angular velocity and gravitational force, are discussed under a variety of boundary conditions. Apart from a few cases, the treatment applies when the Taylor number T and the Chandrasekhar number Q (the square of the Hartmann number) are large. (These parameters are dimensionaless measures of angular velocity and magnetic field, respectively). It is shown that the motions at the onset of instability can be of three types.

Original languageEnglish
Pages (from-to)161-179
Number of pages19
JournalJournal of Fluid Mechanics
Volume71
Issue numberpt 1
Publication statusPublished - Sep 9 1975

    Fingerprint

ASJC Scopus subject areas

  • Computational Mechanics
  • Mechanics of Materials
  • Physics and Astronomy(all)
  • Condensed Matter Physics

Cite this