### Abstract

The effect of the simultaneous action of a uniform magnetic field and a uniform angular velocity on the linear stability of the Benard layer to time-dependent convective motions is examined in the Boussinesq approximation. Four models, characterized by the relative directions of the magnetic field, angular velocity and gravitational force, are discussed under a variety of boundary conditions. Apart from a few cases, the treatment applies when the Taylor number T and the Chandrasekhar number Q (the square of the Hartmann number) are large. (These parameters are dimensionaless measures of angular velocity and magnetic field, respectively). It is shown that the motions at the onset of instability can be of three types.

Original language | English |
---|---|

Pages (from-to) | 161-179 |

Number of pages | 19 |

Journal | Journal of Fluid Mechanics |

Volume | 71 |

Issue number | pt 1 |

Publication status | Published - Sep 9 1975 |

### ASJC Scopus subject areas

- Computational Mechanics
- Mechanics of Materials
- Physics and Astronomy(all)
- Condensed Matter Physics

## Fingerprint Dive into the research topics of 'OVERSTABLE HYDROMAGNETIC CONVECTION IN A ROTATING FLUID LAYER.'. Together they form a unique fingerprint.

## Cite this

*Journal of Fluid Mechanics*,

*71*(pt 1), 161-179.