Optimal L∞-error estimate of a finite element method for Hamilton-Jacobi-Bellman equations

M. Boulbrachene, P. Cortey Dumont

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

This paper is concerned with the piecewise linear finite element approximation of Hamilton-Jacobi-Bellman equations. We establish the optimal L- error estimate, combining the concepts of subsolution and discrete regularity.

Original languageEnglish
Pages (from-to)421-435
Number of pages15
JournalNumerical Functional Analysis and Optimization
Volume30
Issue number5-6
DOIs
Publication statusPublished - May 2009

Fingerprint

Subsolution
Hamilton-Jacobi-Bellman Equation
Linear Approximation
Finite Element Approximation
Piecewise Linear
Error Estimates
Finite Element Method
Regularity
Finite element method
Concepts

Keywords

  • Error estimate
  • Finite element
  • Hamilton-Jacobi-Bellman equations
  • Quasivariational inequalities

ASJC Scopus subject areas

  • Analysis
  • Control and Optimization
  • Signal Processing
  • Computer Science Applications

Cite this

Optimal L∞-error estimate of a finite element method for Hamilton-Jacobi-Bellman equations. / Boulbrachene, M.; Dumont, P. Cortey.

In: Numerical Functional Analysis and Optimization, Vol. 30, No. 5-6, 05.2009, p. 421-435.

Research output: Contribution to journalArticle

@article{ea033a656e5e4d4dba7cabc90566d593,
title = "Optimal L∞-error estimate of a finite element method for Hamilton-Jacobi-Bellman equations",
abstract = "This paper is concerned with the piecewise linear finite element approximation of Hamilton-Jacobi-Bellman equations. We establish the optimal L-∞ error estimate, combining the concepts of subsolution and discrete regularity.",
keywords = "Error estimate, Finite element, Hamilton-Jacobi-Bellman equations, Quasivariational inequalities",
author = "M. Boulbrachene and Dumont, {P. Cortey}",
year = "2009",
month = "5",
doi = "10.1080/01630560902987683",
language = "English",
volume = "30",
pages = "421--435",
journal = "Numerical Functional Analysis and Optimization",
issn = "0163-0563",
publisher = "Taylor and Francis Ltd.",
number = "5-6",

}

TY - JOUR

T1 - Optimal L∞-error estimate of a finite element method for Hamilton-Jacobi-Bellman equations

AU - Boulbrachene, M.

AU - Dumont, P. Cortey

PY - 2009/5

Y1 - 2009/5

N2 - This paper is concerned with the piecewise linear finite element approximation of Hamilton-Jacobi-Bellman equations. We establish the optimal L-∞ error estimate, combining the concepts of subsolution and discrete regularity.

AB - This paper is concerned with the piecewise linear finite element approximation of Hamilton-Jacobi-Bellman equations. We establish the optimal L-∞ error estimate, combining the concepts of subsolution and discrete regularity.

KW - Error estimate

KW - Finite element

KW - Hamilton-Jacobi-Bellman equations

KW - Quasivariational inequalities

UR - http://www.scopus.com/inward/record.url?scp=68649123803&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=68649123803&partnerID=8YFLogxK

U2 - 10.1080/01630560902987683

DO - 10.1080/01630560902987683

M3 - Article

VL - 30

SP - 421

EP - 435

JO - Numerical Functional Analysis and Optimization

JF - Numerical Functional Analysis and Optimization

SN - 0163-0563

IS - 5-6

ER -