Optimal and objective placement of sensors in water distribution systems using information theory

Mohammad S. Khorshidi, Mohammad Reza Nikoo*, Mojtaba Sadegh

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Optimization-based deployment of contamination warning system in water distribution systems has been widely used in the literature, due to their superior performance compared to rule- and opinion-based approaches. However, optimization techniques impose an excessive computational burden, which in turn is compensated for by shrinking the problem's decision space and/or using faster optimization algorithms with less accuracy. This imposes subjectivity in interpretation of the system and associated risks, and undermines model's accuracy by not exploring the entire feasible space. We propose a framework that uses information theoretic techniques, including value of information and transinformation entropy, for optimal sensor placement. This can be used either as pre-selection, i.e. pinpointing best potential locations of sensors to be in turn used in optimization framework, or ultimate selection, i.e. single-handedly selecting sensor locations from the feasible space. The proposed framework is then applied to Lamerd water distribution system, in Fars province, Iran, and the results are compared to the suggested potential locations of sensors in previous studies and results of TEVA-SPOT model. The proposed information theoretic scheme enhances the decision space, provides more accurate results, significantly reduces the computational burden, and warrants objective selection of sensor placement.

Original languageEnglish
Pages (from-to)218-228
Number of pages11
JournalWater Research
Volume143
DOIs
Publication statusPublished - Oct 15 2018

Keywords

  • Contamination warning system
  • Sensor placement
  • Transinformation entropy
  • Value of information
  • Water distribution system

ASJC Scopus subject areas

  • Ecological Modelling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Cite this