On some nonself mappings

Lj B. Ćirić, J. S. Ume, M. S. Khan, H. K. Pathak

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Let X be a Banach space, let K be a non-empty closed subset of X and let T : K →X be a non-self mapping. The main result of this paper is that if T satisfies the contractive-type condition (1.1) below and maps ∂K (∂K the boundary of K) into K, then T has a unique fixed point in K.

Original languageEnglish
Pages (from-to)28-33
Number of pages6
JournalMathematische Nachrichten
Volume251
DOIs
Publication statusPublished - 2003

Fingerprint

Fixed point
Banach space
Closed
Subset

Keywords

  • Banach space
  • Fixed point
  • Nonself-mapping

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Ćirić, L. B., Ume, J. S., Khan, M. S., & Pathak, H. K. (2003). On some nonself mappings. Mathematische Nachrichten, 251, 28-33. https://doi.org/10.1002/mana.200310028

On some nonself mappings. / Ćirić, Lj B.; Ume, J. S.; Khan, M. S.; Pathak, H. K.

In: Mathematische Nachrichten, Vol. 251, 2003, p. 28-33.

Research output: Contribution to journalArticle

Ćirić, LB, Ume, JS, Khan, MS & Pathak, HK 2003, 'On some nonself mappings', Mathematische Nachrichten, vol. 251, pp. 28-33. https://doi.org/10.1002/mana.200310028
Ćirić, Lj B. ; Ume, J. S. ; Khan, M. S. ; Pathak, H. K. / On some nonself mappings. In: Mathematische Nachrichten. 2003 ; Vol. 251. pp. 28-33.
@article{4f41862ed38b46db87787666adfc9954,
title = "On some nonself mappings",
abstract = "Let X be a Banach space, let K be a non-empty closed subset of X and let T : K →X be a non-self mapping. The main result of this paper is that if T satisfies the contractive-type condition (1.1) below and maps ∂K (∂K the boundary of K) into K, then T has a unique fixed point in K.",
keywords = "Banach space, Fixed point, Nonself-mapping",
author = "Ćirić, {Lj B.} and Ume, {J. S.} and Khan, {M. S.} and Pathak, {H. K.}",
year = "2003",
doi = "10.1002/mana.200310028",
language = "English",
volume = "251",
pages = "28--33",
journal = "Mathematische Nachrichten",
issn = "0025-584X",
publisher = "Wiley-VCH Verlag",

}

TY - JOUR

T1 - On some nonself mappings

AU - Ćirić, Lj B.

AU - Ume, J. S.

AU - Khan, M. S.

AU - Pathak, H. K.

PY - 2003

Y1 - 2003

N2 - Let X be a Banach space, let K be a non-empty closed subset of X and let T : K →X be a non-self mapping. The main result of this paper is that if T satisfies the contractive-type condition (1.1) below and maps ∂K (∂K the boundary of K) into K, then T has a unique fixed point in K.

AB - Let X be a Banach space, let K be a non-empty closed subset of X and let T : K →X be a non-self mapping. The main result of this paper is that if T satisfies the contractive-type condition (1.1) below and maps ∂K (∂K the boundary of K) into K, then T has a unique fixed point in K.

KW - Banach space

KW - Fixed point

KW - Nonself-mapping

UR - http://www.scopus.com/inward/record.url?scp=0037232808&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037232808&partnerID=8YFLogxK

U2 - 10.1002/mana.200310028

DO - 10.1002/mana.200310028

M3 - Article

VL - 251

SP - 28

EP - 33

JO - Mathematische Nachrichten

JF - Mathematische Nachrichten

SN - 0025-584X

ER -