On certain finite semigroups of order-decreasing transformations I

A. Laradji, A. Umar

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Let Dn (script O signn) be the semigroup of all finite order-decreasing (order-preserving) full transformations of an n-element chain, and let D(n,r) = {α ∈ Dn : |Im α| ≤ r} (C(n,r) = D(n,r) ∩ script O signn) be the two-sided ideal of Dn (Dn ∩ script O signn). Then it is shown that for r ≥ 2, the Rees quotient semigroup DPr(n) = D(n,r)/D(n,r-1) (CPr(n) = C(n,r)/C(n,r- 1)) is an R-trivial ( J-trivial) idempotent-generated 0*-bisimple primitive abundant semigroup. The order of CPr(n) is shown to be 1 + (n-1 r-1) ( n r ) /(n - r + 1). Finally, the rank and idempotent ranks of CPr(n) (r <n) are both shown to be equal to ( n-1 r-1 ).

Original languageEnglish
Pages (from-to)184-200
Number of pages17
JournalSemigroup Forum
Volume69
Issue number2
DOIs
Publication statusPublished - Sep 2004

Fingerprint

Semigroup
Idempotent
Trivial
Quotient

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

On certain finite semigroups of order-decreasing transformations I. / Laradji, A.; Umar, A.

In: Semigroup Forum, Vol. 69, No. 2, 09.2004, p. 184-200.

Research output: Contribution to journalArticle

Laradji, A. ; Umar, A. / On certain finite semigroups of order-decreasing transformations I. In: Semigroup Forum. 2004 ; Vol. 69, No. 2. pp. 184-200.
@article{fbbd498aff114ca699df85dcba8c1820,
title = "On certain finite semigroups of order-decreasing transformations I",
abstract = "Let Dn (script O signn) be the semigroup of all finite order-decreasing (order-preserving) full transformations of an n-element chain, and let D(n,r) = {α ∈ Dn : |Im α| ≤ r} (C(n,r) = D(n,r) ∩ script O signn) be the two-sided ideal of Dn (Dn ∩ script O signn). Then it is shown that for r ≥ 2, the Rees quotient semigroup DPr(n) = D(n,r)/D(n,r-1) (CPr(n) = C(n,r)/C(n,r- 1)) is an R-trivial ( J-trivial) idempotent-generated 0*-bisimple primitive abundant semigroup. The order of CPr(n) is shown to be 1 + (n-1 r-1) ( n r ) /(n - r + 1). Finally, the rank and idempotent ranks of CPr(n) (r n-1 r-1 ).",
author = "A. Laradji and A. Umar",
year = "2004",
month = "9",
doi = "10.1007/s00233-004-0101-9",
language = "English",
volume = "69",
pages = "184--200",
journal = "Semigroup Forum",
issn = "0037-1912",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - On certain finite semigroups of order-decreasing transformations I

AU - Laradji, A.

AU - Umar, A.

PY - 2004/9

Y1 - 2004/9

N2 - Let Dn (script O signn) be the semigroup of all finite order-decreasing (order-preserving) full transformations of an n-element chain, and let D(n,r) = {α ∈ Dn : |Im α| ≤ r} (C(n,r) = D(n,r) ∩ script O signn) be the two-sided ideal of Dn (Dn ∩ script O signn). Then it is shown that for r ≥ 2, the Rees quotient semigroup DPr(n) = D(n,r)/D(n,r-1) (CPr(n) = C(n,r)/C(n,r- 1)) is an R-trivial ( J-trivial) idempotent-generated 0*-bisimple primitive abundant semigroup. The order of CPr(n) is shown to be 1 + (n-1 r-1) ( n r ) /(n - r + 1). Finally, the rank and idempotent ranks of CPr(n) (r n-1 r-1 ).

AB - Let Dn (script O signn) be the semigroup of all finite order-decreasing (order-preserving) full transformations of an n-element chain, and let D(n,r) = {α ∈ Dn : |Im α| ≤ r} (C(n,r) = D(n,r) ∩ script O signn) be the two-sided ideal of Dn (Dn ∩ script O signn). Then it is shown that for r ≥ 2, the Rees quotient semigroup DPr(n) = D(n,r)/D(n,r-1) (CPr(n) = C(n,r)/C(n,r- 1)) is an R-trivial ( J-trivial) idempotent-generated 0*-bisimple primitive abundant semigroup. The order of CPr(n) is shown to be 1 + (n-1 r-1) ( n r ) /(n - r + 1). Finally, the rank and idempotent ranks of CPr(n) (r n-1 r-1 ).

UR - http://www.scopus.com/inward/record.url?scp=4744376256&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4744376256&partnerID=8YFLogxK

U2 - 10.1007/s00233-004-0101-9

DO - 10.1007/s00233-004-0101-9

M3 - Article

VL - 69

SP - 184

EP - 200

JO - Semigroup Forum

JF - Semigroup Forum

SN - 0037-1912

IS - 2

ER -