On an extension of a quadratic transformation formula due to Kummer

Medhat A. Rakha, Navratna Rathie, Purnima Chopra

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

The aim of this research note is to prove the following new transformation formula (1 - x)-2a 3F2 [ c + 3/2, d a, a + 1/2, d + 1; x2/(1 - x)2 ] = 4F3 [ 2c + 2, 2d + 1/2A - 1/2, 2d - 1/2A - 1/2 2a, c, 2d + 1/2A +1/2, 2d - 1/2A + 1/2; 2x ] valid for |x| <1/2 and if |x| = 1/2, then Re(c - 2a) > 0, where A = √16d2 - 16cd - 8d + 1. For d = c + 1/2, we get quadratic transformations due to Kummer. The result is derived with the help of the generalized Gauss's summation theorem available in the literature.

Original languageEnglish
Pages (from-to)207-209
Number of pages3
JournalMathematical Communications
Volume14
Issue number2
Publication statusPublished - Dec 2009

Fingerprint

Transformation Formula
Summation
Gauss
Valid
Theorem

Keywords

  • Gauss summation theorem
  • Kummer transformation
  • Quadratic transformation formula

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Analysis
  • Applied Mathematics
  • Geometry and Topology

Cite this

On an extension of a quadratic transformation formula due to Kummer. / Rakha, Medhat A.; Rathie, Navratna; Chopra, Purnima.

In: Mathematical Communications, Vol. 14, No. 2, 12.2009, p. 207-209.

Research output: Contribution to journalArticle

Rakha, Medhat A. ; Rathie, Navratna ; Chopra, Purnima. / On an extension of a quadratic transformation formula due to Kummer. In: Mathematical Communications. 2009 ; Vol. 14, No. 2. pp. 207-209.
@article{73d44905712e44a1bc736bdce4b1836b,
title = "On an extension of a quadratic transformation formula due to Kummer",
abstract = "The aim of this research note is to prove the following new transformation formula (1 - x)-2a 3F2 [ c + 3/2, d a, a + 1/2, d + 1; x2/(1 - x)2 ] = 4F3 [ 2c + 2, 2d + 1/2A - 1/2, 2d - 1/2A - 1/2 2a, c, 2d + 1/2A +1/2, 2d - 1/2A + 1/2; 2x ] valid for |x| <1/2 and if |x| = 1/2, then Re(c - 2a) > 0, where A = √16d2 - 16cd - 8d + 1. For d = c + 1/2, we get quadratic transformations due to Kummer. The result is derived with the help of the generalized Gauss's summation theorem available in the literature.",
keywords = "Gauss summation theorem, Kummer transformation, Quadratic transformation formula",
author = "Rakha, {Medhat A.} and Navratna Rathie and Purnima Chopra",
year = "2009",
month = "12",
language = "English",
volume = "14",
pages = "207--209",
journal = "Mathematical Communications",
issn = "1331-0623",
publisher = "Udruga Matematicara Osijek",
number = "2",

}

TY - JOUR

T1 - On an extension of a quadratic transformation formula due to Kummer

AU - Rakha, Medhat A.

AU - Rathie, Navratna

AU - Chopra, Purnima

PY - 2009/12

Y1 - 2009/12

N2 - The aim of this research note is to prove the following new transformation formula (1 - x)-2a 3F2 [ c + 3/2, d a, a + 1/2, d + 1; x2/(1 - x)2 ] = 4F3 [ 2c + 2, 2d + 1/2A - 1/2, 2d - 1/2A - 1/2 2a, c, 2d + 1/2A +1/2, 2d - 1/2A + 1/2; 2x ] valid for |x| <1/2 and if |x| = 1/2, then Re(c - 2a) > 0, where A = √16d2 - 16cd - 8d + 1. For d = c + 1/2, we get quadratic transformations due to Kummer. The result is derived with the help of the generalized Gauss's summation theorem available in the literature.

AB - The aim of this research note is to prove the following new transformation formula (1 - x)-2a 3F2 [ c + 3/2, d a, a + 1/2, d + 1; x2/(1 - x)2 ] = 4F3 [ 2c + 2, 2d + 1/2A - 1/2, 2d - 1/2A - 1/2 2a, c, 2d + 1/2A +1/2, 2d - 1/2A + 1/2; 2x ] valid for |x| <1/2 and if |x| = 1/2, then Re(c - 2a) > 0, where A = √16d2 - 16cd - 8d + 1. For d = c + 1/2, we get quadratic transformations due to Kummer. The result is derived with the help of the generalized Gauss's summation theorem available in the literature.

KW - Gauss summation theorem

KW - Kummer transformation

KW - Quadratic transformation formula

UR - http://www.scopus.com/inward/record.url?scp=74549156389&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=74549156389&partnerID=8YFLogxK

M3 - Article

VL - 14

SP - 207

EP - 209

JO - Mathematical Communications

JF - Mathematical Communications

SN - 1331-0623

IS - 2

ER -