Numerical analysis of fluid flow through an electrical submersible pump for handling viscous liquid

Md Hamid Siddique, Sanoop Manayilthodiyil, Afzal Husain, Abdus Samad, Frank Kenyery

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Generally, artificial lifts to pump crude oil having a high viscosity from wellbores using an electrical submersible pump (ESP) are not efficient. The present study consists of a numerical approach to understand the effect of fluid viscosity and surface roughness of the flow passage on the performance of an ESP. A three-dimensional numerical analysis was carried out using Reynolds-averaged Navier-Stokes equations at different off-design conditions. The standard k-ϵ turbulence model was used for the steady incompressible flow. Water and crude oils having different viscosities were used as working fluids and numerical analyses were made by varying surface roughness of the flow passage. Although there was a sharp drop in the efficiency with the increase in surface roughness, but the combined effect of viscosity and surface roughness showed an increase in efficiency up to a certain fluid viscosity.

Original languageEnglish
Title of host publicationSymposia
Subtitle of host publicationTurbomachinery Flow Simulation and Optimization; Applications in CFD; Bio-Inspired and Bio-Medical Fluid Mechanics; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES and Hybrid RANS/LES Methods; Fluid Machinery; Fluid-Structure Interaction and Flow-Induced Noise in Industrial Applications; Flow Applications in Aerospace; Active Fluid Dynamics and Flow Control - Theory, Experiments and Implementation
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850282
DOIs
Publication statusPublished - 2016
EventASME 2016 Fluids Engineering Division Summer Meeting, FEDSM 2016, collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels - Washington, United States
Duration: Jul 10 2016Jul 14 2016

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume1A-2016
ISSN (Print)0888-8116

Other

OtherASME 2016 Fluids Engineering Division Summer Meeting, FEDSM 2016, collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
Country/TerritoryUnited States
CityWashington
Period7/10/167/14/16

Keywords

  • Electrical submersible pump
  • High viscosity
  • Numerical analysis
  • Surface roughness

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Numerical analysis of fluid flow through an electrical submersible pump for handling viscous liquid'. Together they form a unique fingerprint.

Cite this