TY - JOUR
T1 - Non-parametric severity-duration-frequency analysis of drought based on satellite-based product and model fusion techniques
AU - Jafari, Seyedeh Mahboobeh
AU - Nikoo, Mohammad Reza
AU - Sadegh, Mojtaba
AU - Chen, Mingjie
AU - Gandomi, Amir H.
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2023
Y1 - 2023
N2 - Climate change has increased the severity and frequency of droughts over the last decades. To alleviate the adverse impacts of droughts, an effective planning and management framework requires high-resolution spatiotemporal data. TRMM multi-satellite precipitation analysis (TMPA) dataset provides sufficient accuracy with fine spatio-temporal resolution. However, it only covers a short temporal span, which limits its applicability for drought studies. This paper presents a methodology for efficient and accurate temporal extension of TMPA using four artificial intelligence (AI)-based models. To improve AI-based model precipitation estimations, fusion techniques including Orness, Orlike, and genetic algorithm (GA)-based weighting methods were employed. Results show that fusion approaches provide more accurate estimates of precipitation. Different timescales of n-SPI time series and drought spatial maps were prepared to visually evaluate the performance of long-term TMPA (LT-TMPA) alongside statistical error indices. The results confirm that this dataset is effective for meteorological drought monitoring over southern Iran. Finally, drought risk assessment was carried out to determine the spatiotemporal characteristics of droughts through severity-duration-frequency (SDF) contour maps. In contrast to the traditional SDF curves, SDF contour maps provide a superior understanding of drought for policymakers since they preserve spatial information.
AB - Climate change has increased the severity and frequency of droughts over the last decades. To alleviate the adverse impacts of droughts, an effective planning and management framework requires high-resolution spatiotemporal data. TRMM multi-satellite precipitation analysis (TMPA) dataset provides sufficient accuracy with fine spatio-temporal resolution. However, it only covers a short temporal span, which limits its applicability for drought studies. This paper presents a methodology for efficient and accurate temporal extension of TMPA using four artificial intelligence (AI)-based models. To improve AI-based model precipitation estimations, fusion techniques including Orness, Orlike, and genetic algorithm (GA)-based weighting methods were employed. Results show that fusion approaches provide more accurate estimates of precipitation. Different timescales of n-SPI time series and drought spatial maps were prepared to visually evaluate the performance of long-term TMPA (LT-TMPA) alongside statistical error indices. The results confirm that this dataset is effective for meteorological drought monitoring over southern Iran. Finally, drought risk assessment was carried out to determine the spatiotemporal characteristics of droughts through severity-duration-frequency (SDF) contour maps. In contrast to the traditional SDF curves, SDF contour maps provide a superior understanding of drought for policymakers since they preserve spatial information.
KW - Drought
KW - Model fusion
KW - Non-parametric SPI
KW - Satellite-based products
KW - Severity-duration-frequency curves
UR - http://www.scopus.com/inward/record.url?scp=85146306895&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85146306895&partnerID=8YFLogxK
U2 - 10.1007/s11356-023-25235-x
DO - 10.1007/s11356-023-25235-x
M3 - Article
C2 - 36645590
AN - SCOPUS:85146306895
SN - 0944-1344
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
ER -